
MEMORANDUM
J RM-3804-PR
! SEPTEMBER 1963

SOVIET CYBERNETICS TECHNOLOGY:
III, PROGRAMMING ELEMENTS OF THE

BESM, STRELA, URAL, M-3, AND
KIEV COMPUTERS

Translated by A. S. Kozak
Edited by Willis H. Ware and Wade B. Holland

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

R-Д П D gn/toMOt*
SANTA MONICA • CALIFORNIA-

MEMORANDUM
RM-3804-PR
SEPTEMBER 1963

SOVIET CYBERNETICS TECHNOLOGY:
III, PROGRAMMING ELEMENTS OF THE

BESM, STRELA, URAL, M-3, AND
KIEV COMPUTERS

Translated by A. S. Kozak
Edited by Willis H. Ware and Wade B. Holland

This research is sponsored by the United States Air Force under Project RAND—
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning.
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force.

-----------------------------* M II

—iii—

PREFACE

This Memorandum contains a translation from the Rus­

sian detailing the instruction formats for five of the

better known Soviet digital computers. This is probably

one of the most poorly documented areas of Soviet computer

technology, and with recent announcements of Soviet in­

tentions to offer the Ural computer for sale in Western

markets, it is of interest to determine the exact nature

of the command structures utilized on Soviet machines.

The present translation was undertaken in order to

bring together in one place descriptions relative to sever­

al computers as given by a single source. It is therefore

felt that the descriptions from machine to machine are quite

consistent, and do not exhibit the ambiguities which have

characterized research into this subject in the past where

different authors have discussed different machines.

This Memorandum is essentially a translation, not a

detailed analysis. However, some notes are included in

the RAND Editors’ Introduction which will help place the

machines in perspective. The RAND editors have also pre­

pared charts which give the operation codes for the five

machines. These charts are presented with the original

Russian statements and the English translations in parallel

columns, which should be of interest to translators, re­

searchers, and others caught up in the intricacies of

Soviet computer terminology and, especially, abbreviations.

-iv-

The series Soviet Cybernetics Technology is part of

a continuing program of research in computer technology

conducted by The RAND Corporation, under U. S. Air Force

Project RAND. A list of related publications of The RAND

Corporation is found on p. 69. All translations undertaken

at RAND are registered with the Office of Technical Services,

Department of Commerce, Washington 25, D.C.

SUMMARY

This Memorandum is a translation of the Appendix of
the book, Elements of Programming.* The book itself is a

general introduction to the subject of electronic computing,

with particular emphasis on serving as a guide to program­

mers. It is intended for use by university students and

students in advanced technological institutions.

The interesting feature of the book is the Appendix,

which details the command structures and systems of nota­

tion for the five Soviet computers: BESM, Strela, Ural,

M-3, and Kiev. Additionally, some specifications for each

of the computers are included.

The Introduction prepared by the editors of the Soviet

Cybernetics Technology series contains summaries of the

operations codes for the five machines in chart form. It

also contains comments on the problems one encounters in

trying to make analyses of the Soviet state of the art,

pointing out the vast differences that are found when com­

paring two different authors' comments on the same machine.

Elementy Programmirovaniya, B. V. Gnedenko, V. S.
Korolyuk, E. L. Yushchenko, Fizmatgiz, Moscow, 1961, 346
pp. Appendix translated at The RAND Corporation by A. S.
Kozak.

CONTENTS

PREFACE .. Hi

SUMMARY ... v

RAND EDITORS' INTRODUCTION .. ix

APPENDIX TO ELEMENTS OF PROGRAMMING

BESM .. 1

STRELA .. 15

URAL .. 31

M-3 .. 45

KIEV .. 52

BIBLIOGRAPHY OF RAND CORPORATION PUBLICATIONS IN
SOVIET CYBERNETICS AND COMPUTER TECHNOLOGY 69

RAND EDITORS' INTRODUCTION

This translation of the Appendix of Elements of Pro­

gramming presents the programming fundamentals for five

Soviet computers from one viewpoint and in a comparable

manner. This is its principal value. It would be pre­

sumptive to claim that the notations given here are abso­

lutely correct, since for each of the computers covered

(with the exception of the M-3, for which there is only a

small amount of literature available) different sources

give divergent operation formats. In some cases, only

minor inconsistencies are to be noted, while in others,

the schemes are radically different. But the present

article, dealing with several computers from the same

standpoint, employing a consistent approach to the subject

matter, is of some value for purposes of comparison, even

if it isn't accepted as the final word for the machines

with which it deals.

There are several possible explanations for the lack

of agreement among different Soviet authors who purport

to speak authoritatively on the same machine. First, in

many instances we suspect that, although not explicitly

stated, these articles sometimes deal with locally modified

versions of a machine. Further, in many cases the names of

Soviet computers are really generic terms; if an author

uses only the broad designation for the machine he is de­

scribing, some analysis is necessary to determine whether

-X-

he is talking about a particular model (e.g., in the Ural

series there is the Ural-1, the Ural-2, and the Ural-4),

about a design prototype, or is actually considering the

series as a whole. The BESM machine, about which much

has been written, is an excellent example of an aggravated

case of inconsistencies in the literature. BESM-I never

got beyond the prototype stage, and the production model

is referred to as BESM-II (or, by some authors, the BESM-2).

The modifications which triggered the separate designation

of the Il-model evolved over a period of several years,

so that some of the earlier articles on the BESM-II de­

scribe something midway between the two models. Some authors

fail to draw any distinction between the two; they simply

talk about the BESM that was current at the time they wrote

their article.

There has never been the emphasis in the Soviet design

centers on software that U.S. manufacturers exhibit. Soviet

computers are products of computing centers at universities

and in the various Academies of Sciences. The logical de­

sign and the construction of the machines are carried out

separately from the programming and software development,

the latter often being handled by a computing mathematics

faculty or comparable group. Also, it often happens that

laboratory-constructed versions of a particular machine

are shipped out to other universities or computing centers,

where they are fitted out with auxiliary components according

to the specific intended application. The local center

often develops its own software, which probably accounts

for some of the variations noted in the literature. The

remaining mystery, though, is why there is such a reluc­

tance to make this factor clear in writing about such a

machine.

We touched briefly above on the BESM, one of the

machines covered in this translation. This article is an

example of an author's failure to distinguish between

BESM-I and BESM-II. The machine being specified in the

opening paragraphs at first appears to be a cross between

the two versions. The date, 1951, is definitely indica­

tive of BESM-I vintage, since by 1959 the II-version was

only at the prototype stage. But, the stated speed (8000­

10,000 opns/sec) and the core store size (2047 words) are
figures associated with BESM-II.* If the 1951 date is ac­

cepted as simply the time when work first started on the

initial version of the machine, this article can probably

be safely identified with BESM-II. In any case, it is

doubtful that the authors would have been quite so con­

cerned with BESM-I, since it was never actually produced.

(As far as the software is concerned, the question is per­

haps academic, since the two versions are understood to

utilize the same programming techniques. The differences

See item 1 in the Bibliography for a comparison of
the BESMs.

Ibid., p. 63.

between the two are mainly in the auxiliary units and in

the elegance of the construction techniques.)

The Ural under consideration is the Ural-1. The

Ural-2 and Ural-4 have since been developed, but the Ural-1

does not seem to have been obsoleted, although it is quite

primitive by present standards. New literature has appeared
on Ural-1 as recently as late-1962,* in which mention is

made of the more recent 2- and 4-models. (This points out

another interesting facet of the Soviet technology: Even

though a machine might be succeeded by improved versions,

it is not thereby considered obsolete, nor does its "refine­

ment" cease. It is likely, although there is no direct

evidence one way or the other, that Ural-1 machines are

still being manufactured.) But, even though we can with a

high degree of assurance identify the Ural in this work as

the initial model in the series, the op codes here detailed

are substantially at odds with another, more recent, survey.

It should be pointed out that in preparing the accom­

panying charts (pp. xiv-xxi, below) of the operations of the

five computers, only information derived from Elements of

Programming has been used. Not as much information is given

in some cases as in others, reflecting the differing levels

Gavrilenko, E. T.. et al., Programmirovanie dlya
elektronnoj yychislitel'noj mashiny "Ural-1" [Programming
for the "Ural-1" Computer], Mashgiz, Moscow, 1962.

tIbid,, pp. 261-63.

-xiii-

of detail among the five machines covered. Although by

drawing on other sources, it would have been perhaps pos­

sible to maintain the same depth of detail throughout,

this was felt unwise, again, because of the probability

of introducing inaccuracies in trying to reformulate infor­

mation from other sources to make it consistent with the

approach adopted by the editors of Elements of Programming.

It will be readily noted that there are columns on the BESM

and Kiev charts (labeled "Designation") which are missing on

the charts for the other three machines. In this column

is given the mnemonic representation of the operation. In

the cases where letter designations (as opposed to mathe­

matical symbols) are used, these two charts have the

additional, and very useful, function of defining standard

Russian abbreviations--many of which are frequently en­

countered in the literature, but are rarely defined.

Finally, a bibliography of other RAND Corporation

publications in the area of Soviet cybernetics and computer

technology is found on p. 69. Further information on some

of the machines covered here is to be found in items 1 and

4.

In a related project, work is underway at RAND on
the formulation of glossaries of Russian-English computer
terminology and of Soviet computer abbreviations.

Table I--Command Structure for the BESM Computer

Назначение (Обозначен.

I. ОПЕРАЦИИ ПЕРЕДАЧИ УПРАВЛЕНИЯ С
МЕСТНОГО НА ЦЕНТРАЛЬНОЕ И С ЦЕНТРАЛЬНОГО

НА МЕСТНОЕ

SritV кода опер. „ . .ЙН Ор. code^ DeslSnat
I. OPERATIONS OF CONTROL TRANSFER

FROM LOCAL TO CENTRAL AND
FROM CENTRAL TO LOCAL

Передача на местное управление.
Переход на центральное управление

команд.
Изменение счетчика местного управ-

Изменение счетчика центрального
управления командами.

II. ОПЕРАЦИИ ПРЕОБРАЗОВАНИЯ И
ПЕРЕСЫЛКИ КОДОВ

Сложение.
Сложение с блокировкой нормали-

Вычитание.
Вычитание с блокировкой нормали-

Умяожеиие.
Умножение с блокировкой нормали-

Делеиие.
Сложение порядков.
Сложение порядков с блокировкой

нормализации.
Вычитание порядков.
Вычитание порядков о блокировкой

нормализации.
Изменение порядка по адресу.

Изменение порядка по адресу с
блокировкой нормализации.

Умножение с выводом удвоенного '
количества разрядов.

Го же, что и 14 и 15, ио с блоки­
ровкой нормализации.

Деление с выводом остатка.

Передача числа нормальная.
Передача числа нормальная с блоки­

ровкой нормализации.
Передача числа на печать.
Передача числа с регистров пульта

управления.

ПМУК
ПЦУК

ИМУК

ицук

'10,-011000
'К?-011001

'Kq-011010

•Kg-011011

1 '10,-000001
8 'rç-iooooi

3 'К«-000010
4 'Kq-100010

5 '10,-000011
6 'K^-100011

7 'Ko-000100
8 ' IO, -000101
9 'rç-100101

'10,-000110
'KJ-lOOllO

'Kq-000111

'Kq-100111

PMUK
PTsUK

IMUK

ITsUK

Transfer to local control.
Branch to central command control.

Change local ^command] control
counter.

Change central command control
counter.

II. CODE CONVERSION AND TRANSFER
OPERATIONS

Addition.
Addition without normalization.

Subtraction.
Subtraction without normalization.

14
15
16
17
IB
19
::•?
81

22
£3

'10,-001000
'KX-001001
' ЮС-101000
•kX-101001
■kX-001010
'КД-001011
'КД-001100
■kX-IOUOO

' 1C.-101100*
'1^-001100*

Multiplication.
Multiplication without normaliza­

tion.
Division.
Addition of exponents.
Addition of exponents without

normalization.
Subtraction of exponents.
Subtraction of exponents without

normalization.
Change in the exponent according

to the address.
Change in the exponent according to

the address without normalization
Multiplication with output of twice

the number of bits.
Same as 14 and 15, but without

normalization.
Division with output of the re­

ma inder
Normal transfer.
Normal transfer without normall­

Transfer for printout.
Transfer from console control

registers.

See text, p. 9.

Передача числа о регистров пульта
управления с блокировкой нор-

,ПЧР 24 'Кд-101100* , PChR Transfer from console control
registers without normalization.

Передача числа с изменением знака. ПЧ- 25 'Kq-001101 PCh- Transfer with a change in the
sign.

Передача числа с изменением знака ,пч- 26 'Kg=101101 , PCh- Transfer with a change in the sign
и с блокировкой нормализации.

'Kn-001110
'$=101110

and without normalization.
Передача модуля числа. ІПЧІ 27 iPChl Transfer of the modulus.
Передача числа по модулю с блоки- , ІПЧІ 28 ,1 PCh | Transfer according to the modulus

ровкой нормализации.
Передача числа с изменением знака ПЧі 29 'Kg=001111 PCh+

without normalization.
Transfer with a sign change depend­

в зависимости от знака другого ing on the sign of another number

Передача числа с изменением знака ,ПЧ+ 30 'Kq-101111 ,PCh+ Transfer with a sign change depend­
в зависимости от знака другого ing on the sign of another number
числа о блокировкой нормали- but without normalization.

Пере дача порядка числа. 1 31 'Kn=010000 1 Transfer of the exponent.
Передача порядка числа с блоки­ . 1 32 '$=110000 , і Transfer of the exponent without

ровкой нормализации.
Сдвиг с блокировкой порядков. 33 ' Kg =010001

'$=110001
-

normalization.
Shift without exponents.

Сдвиг по всем разрядам. 34 •- Shift over all bits.
Логическое умножение. 35 ' $=011101 L Logical multiplication.
Сложение команд. СК 36 '$=010010

'$=110010
' іф; -olooii

SK Addition of commands.
Циклическое сложение. ,ск 37 ,SK Cyclical addition.
Выделение целой части. ЦЧ 38 TsCh Division of an integral.

III. ОПЕРАЦИИ ПЕРЕДАЧИ УПРАВЛЕНИЯ III . CONTROL TRANSFER OPERATIONS

Сравнение с учетом знаков. 1 ' Kg=0 10 100 |A comparison taking the signs into
I account.

Сравнение на равенство кодов. 2 'Kn=110100 < Ia comparison of equality.
Сравнение по модулю. 3 '$=010101 ’l<l [Comparison according to the modulus

IV. ОПЕРАЦИИ ОБРАЩЕНИЯ К ВНЕШНИМ
УСТРОЙСТВАМ IV. OPERATIONS FOR USING EXTERNAL UNITS

Команды обращения к внешним запом- / мза 1 'Kn =010110
'$=010111

MZa 1 Commands for return to external
инапцим устройствам (магнитная
запись).

\ МЗб 2 MZb / memory units (magnetic recording).

Останов условный (по тумблеру) . ост.усл. 3 Kn=011100 ost »us L. Conditional stop (by a tumbler).
Останов. ост. 4 $=011111 ost. Stop.

Table II—Command Structure for the Strela Computer

t T P E Л A STRELA
Назначение Op. code Description

I. АРИ ШЕТИЧЕСКИЕ ОПЕРАЦИИ I. ARITHMETIC OPERATIONS

Сложение. 1 ■kn - 01 Addition.
Вычитание. •k^ - 03 Subtraction.
Вычитание модулей. 3 ■k“ - 04 Modulus subtraction.
Умножение. 4 •k“ - OS Multiplication.
Сложение порядков. 5 « “ 06 Addition of exponents.
Вычитание порядков. 6 k° - 07 Subtraction of exponents.
Перенос числа с присвоенным знаком другого 7 k0 “ 10 Carry-over of a number with the sign taken

числа• from another number.
Сложение чисел без округления. 8 'k„ - 12 Addition without rounding.
Контрольное суммирование кодов. 9 •k° - 17 Control summing of codes.
Специальное сложение (для команд). 10 ■k° - 02 Special addition (for commands).
Специальное вычитание (для команд). 1 1 'k° - 15 Special subtraction (for coirmands) .

II. ЛОГИЧЕСКИЕ ОПЕРАЦИИ II. LOGICAL OPERATIONS

Поразрядное логическое умножение. Digital logical multiplication.
Поразрядное логическое сложение. 8 'kn ■ 13 Digital logical addition.
Сдвиг. 3 k° - 14 Shift.

The digital operation "non-equivalent."
Сравнение и останов при несовпадении. ь ■k» ■ 26 Comparison and stop for noncoincidence.

III. КОМАНДЫ УСЛОВНОГО ПЕРЕХОДА И III. CONDITIONAL BRANCHING COMMANDS AND
ПРЕДВАРИТЕЛЬНЫЕ КОМАНДЫ ГРУППОВЫХ ОПЕРАЦИИ PRELIMINARY COMMANDS FOR GROUP OPERATIONS

Условный переход первого типа. 1 % ■20 Conditional branch of the first type.
Условный переход второго типа. в Conditional branch of the second type.
Предварительные команды групповых операций. 3 kCi°" 3O-37 Preliminary commands for group operations.

IV. КОМАНДЫ ОБРАЩЕНИЯ К ВНЕШНИМ УСТРОЙСТВАМ IV. COMMANDS FOR THE USE OF EXTERNAL UNITS

Подвод под считывакщую головку эоны 'к! 1 •k0 - 25 Placement of zone 'k. of the magnetic tape
магнитной ленты. under reading head.

Перенос кодов с магнитной ленты в ячейки 2 % - 43 Transfer from magnetic tape to core memory.
памяти.

Перенос кодов внутреннего ЗУ на магнитную 3 'k0 - 46 Transfer from core storage to magnetic tape.
ленту•

Перенос кодов с перфокарт во внутреннюю 4 'k0 ’ 41 Transfer from punched cards to core storage.
память.

Перенос кодов из ячеек ЗУ на перфокарты. 5 % ’ 44 Transfer from core storage cells to punched
ca rds.

Перенос кодов из одних ячеек ЗУ в другие. в 'ko - 45 Transfer from certain core storage cells to

Групповая передача с контролем. 7 'ko - 60 Controlled group transfer.
Операция останова. 8 Halt.

V. СТАНДАРТНЫЕ ПРОГРАММЫ ПОСТОЯННОЙ ПАМЯТИ

Вычисление обратной величины.
Вычисление квадратного корня.
Вычисление показательной функции.
Вычисление логарифма.
Вычисление синуса.
Вычисление функции arctg.
Вычисление функции arcsin.
Перевод кодов из двоичной системы счисления

в двоично-десятичную.
Обратная операция.

8
3

5
6

8

9

сч
о

<ч
'О

'О
'О

'О
'О

 Гчгчгч
г*

jR
R

R
R

F
jP/j? л?

V. STANDARD ROUTINES

Computation of a reciprocal.
Computation of square root.
Computation of an exponential function.
Computation of a logarithm.
Computation of a sine.
Computation of an arctangent.
Computation of an arcsine.
Conversion from binary to binary-decimal.

The reverse operation.

Table III—Cotnaand Structure for the Ural-1 Computer

1Р А Л URAL
Назначение wn

No
У» кода опер.

Op. code Description

I. АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ I. ARITHMETIC OPERATIONS

Сложение. 1 •kn - or Addition.
Эаоылка на сумматор. 8 •k° - 02 Transfer to the accumulator.
Вычитание. 3 kn ’ 03 Subtraction.
Вычитание модулей. 4 ■k° - 04 Modulus subtraction.
Умножение о накоплением в оумматоре. k0 “ 05 Multiplication with storage In accumulator.
Умножение. к k0 ‘ 06 Multiplication.
Деление. 7 % - 07 Division.
Циклическое сложение. 8 ■k® - 26 Cyclical addition.

II. ЛОГИЧЕСКИЕ ОПЕРАЦИИ II. LOGICAL OPERATIONS

оум>атор*. contents of the accumulator.
Сдвиг содержимого регистр* г сумматора. 10 'kn - Il Shift of the contents of register r of the

accumulator.
Поразрядное логическое умножение. 11 % ' 12 Digital logical multiplication.
Поразрядное логическое сложение. 18 k0 ’ 13 Digital logical addition.
!1ореэрядная логическая операция "неравно- 13 kn - 1* The digital logical operation 'non-equiva-0 lent s".
Операция нормализации. 14 ■K) ■ 15 Normalization.
Посылка на оушатора по адресу. 15 "K0 ■ 16 Transfer from the accumulator according to

the address.
Посылка на регистр сумматоре. 16 % ■17 Transfer to the accumulator register.
Посылка на сумматор. 17 •k® - 20 Transfer to the accumulator.

III. ОПЕРАЦИИ ПЕРЕДАЧИ УПРАВЛЕНИЯ III. CONTROL TRANSFER OPERATIONS

Условная передача управления. 18 •kfl - 21 Conditional control transfer.
Безусловная передача управления. 10 'k® - 22 Unconditional control transfer.
Передача управления по ключу. 80 'k® - 23 Control transfer by key.
Начало групповой операции. 81 •k® - 25 Beginning of a group operation.
Конец групповой операции. не 'k® “ 24 End of a group operation.
Изменение команд. 83 •k® - 30 Command change.
Останов и засылка на сумматор. 84 •k® - 37 Stop and transfer to the accumulator.

IV. ОПЕРАЦИИ ОБРАЩЕНИЯ К ВНЕШНИМ УСТРОЙСТВАМ IV. OPERATIONS FOR USE OF EXTERNAL UNITS

Подготовительная команда для передачи кодов. 85 % - 31 Preparatory command for transfer operation.
Печать содержимого сумматор*. 86 •k° - 32 Printout of accumulator contents.
Пропуск одной отроки на бумажной лента. . 87 •£® - 34 Skip one line on the paper tape.

■xvili-

Table IV--Command Structure for the M-3 Computer

U - Q M _ 4

F № кода опер.
No. Op. code

I. АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ

в
3

5
6
7
8

> : °
■к01 = 2
'к01 - 3
'к01 = 4'^01 - 5

: ь
к01 '

I. ARITHMETIC OPERATIONS

II. КОМАНДЫ ПЕРЕДАЧИ УПРАВЛЕНИЯ

Безусловный переход по первому адресу.

Безусловный переход по первому адресу
с печатью содержимого регистра г.

Безусловный переход по второму адресу.

Условный переход.
Останов.

1

2

3

4
5

% - 24

■к0 = 64

'к0 = 74

'к„ = 34-к° - 37

II. CONTROL TRANSFER COMMANDS

Unconditional transfer according to the
first address.

Unconditional transfer according to the
first address with a printout of the
contents of register r.

Unconditional transfer according to the
second address.

Conditional transfer.
Stop.

III. ОПЕРАЦИИ ОБРАЩЕНИЯ К ВВОДУ (ВЫВОДУ)
И ПЕРЕНОСА

Ввод с перфоленты.
Перенос.
Перенос с печатью.

2
3

'кп = 07, 27
’к“ = 05, 15
'кд =45, 55

III. INPUT (OUTPUT) AND TRANSFER OPERATIONS

Input from perforated tape.

Transfer with printout.

Table V--Command Structure for the Kiev Computer

КИЕВ К-1-EJ
Назначение обозначен. 1№

На
Р кода опер.

Op. code
Désignât *r| Description

I. АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ

Сложение.
Вычитание.
Сложение команд.
Вычитание модулей.
Циклическое сложение.
Умножение без округления.
Умножение с округлением.
Деление.

ц*

2
3

5
6

в

■ko - 01'kg - 02
k° - 03
k0 " 06k° - 07
k” - 10
kg ’ 11

,ko - 12

Î-l

Ts+

I. ARITHMETIC OPERATIONS

Addition.
Subtraction.
Addition of commands.
Modulus subtraction.
Cyclical addition.
Multiplication without rounding,
fultiplication with rounding.
Division.

II. ЛОГИЧЕСКИЕ ОПЕРАЦИИ

Нормализация.
Сдвиг логический.
Поразрядное логическое сложение.
Поразрядное логическое умножение.
Поразрядная логическая операция

''неравнозначно."

X

9
10
11
12
13

'kn " 35
*0 " 13■k° - 14
kg " 15

•kg - 17
V

II. LOGICAL OPERATIONS

Normalization.
Logical shift.
Digital logical addition.
Digital logical multiplication.
The digital logical operation

"non-equivalence."

III. ОПЕРАЦИИ ПЕРЕДАЧИ УПРАВЛ

Условная передача управления по
равенству модулей.

Условная передача управления по
соотношению "меньше или равно."

Условная передача управления по
соотношению "меньше или равно"

Условная передача управления по
знаку числа.

Условный переход на подпрограмму.

Переход по регистру возврата.

ЕНИЯ

УПЧ

УПП

14

15

16

18

19

% - 16

•ko -04

•ko - 05

• k0 - 31

• ko - 32

• k0 - 30

III.

UPCh

UPP

CONTROL TRANSFER OPERATIONS

Conditional control transfer ac­
cording to equality of moduli.

Conditional control transfer in re
lation to "less or equal."

Conditional control transfer in re
lation to "less or equal" with­
out considering the signs.

Conditional control transfer ac­
cording to the sign of a number.

Conditional transfer to a sub­
routine .

Transfer according to the return
register.

IV. ОПЕРАЦИИ ОБРАЩЕНИЯ К ВНЕШНИМ У

Ввод чисел с перфоленты (ПЛ).
Ввод команд с перфоленты.

Вывод кодов на ПЛ.

Обмен кодами ОЗУ и внешним ЗУ (МБ)
в режиме "запись."

ТРОЙСТВАМ

ВЧ
ВК

впл
• МБЗ

20
21

22

23

■ko - 20
- 21

•k0 - 22

•kp - 23

IV. OPE

VCh
VK

VPL

MBZ

IATIONS FOR USE OF EXTERNAL UNITS

Data input from perforated tape.
Input of commands from perforated

Output of data onto perforated

Exchange of codes between core and
external units (magnetic drums)
in the "write" mode.

Обмен кодами ОЗУ и МБ в режиме
"очитка."

Подготовительная операция для
операций "МБЗ" и "МБЧ", обеспе­
чивающая надлежащую подводку
магнитного барабана.

Останов.

МБЧ 24

25

26

’к0 = 24

'к0 - 25

'ко = 33

MBCh Exchange of data between core
storage and the magnetic drums
in the "read" mode.

Preparatory operation for the MBZ
and MBCh operations, ensuring
proper feed from/to the magnetic

V. ОПЕРАЦИИ МОДИФИКАЦИИ АДРЕСОВ

Начало групповой операции. 1 НГО
Конец групповой операции. КТО
Заполнение регистра А по фиксатору. Ф

27
28
29 'к» - 34

V. ADDRESS MODIFICATION OPERATIONS

NGO Beginning of a group operation.
KGO lEnd of a group operation.

F (Load register A according to loca-

1-

ELEMENTS OF PROGRAMMING

B. V. Gnedenko, V. S. Korolyuk, E. L. YushchenkQ
[A. S. Kozak, Translator]

APPENDIX

BESM

The BESM high-speed electronic computer, built in

1951 under the direction of Academician S. A. Lebedev

at the Academy of Sciences, USSR, uses 39-bit words and

has floating point. Six bits are used for the exponent

of a number (the first bit is the sign of the exponent),

and 33 bits are for the mantissa (the first bit is the sign

of the mantissa), as shown in Fig. 21.

fifi 11 iYii'i ii iiiiiiiiiirnmiiimnmfi
__ ---------------------------------- r '
Sigr. Digital Sign Digital bits
of the bits of of the of the
exponent exponent mantissa mantissa

Fig. 21.

A three-address command system is used, where six

bits are for coding the type of operation; each address

uses 11 bits.

The speed of the computer is about 8000-10,000

operations per second. Core storage has a capacity of

-2-

2047 cells, and auxiliary storage is on two magnetic drums

and four magnetic tapes. The capacity of a drum is 5120

words; the capacity of a tape is 30,000 words (the tapes

are replaceable). Input is from punched cards and perforated

tape, and output is onto punched cards or paper tape.

Unlike a number of other Soviet computers (Strela,

Kiev, Ural), the BESM has two controls—central and local,

providing convenience in the use of subroutines.

In addition to command register K, there are two

command counters in the BESM:*

*Here we designate only those registers and switches
needed to describe the basic operations of the computer.

Cj is the command counter for central control;

C2 is the command counter for local control.

In addition there is a control trigger T. A 1 in

trigger T corresponds to the central control mode and

a 0 to local control.

Separate machine cycles are used for execution of .

command 'K--that is, the command whose code is contained

in command register K—and for sending the code of the

next command to this register.

For a description of the operations of the BESM,

we shall separate and designate the parts of command

register K. (See Table 10.)

-3-

Table 10

Bits of the BESM
command register
(from left to
right)

Designation and name of bit groups
(registers)

1-6 Kq — operation code register

7-17 K, — I address register

18 - 28 K2 — II address register

29 - 39 Kg — III address register

In addition we shall designate the i— bit of register

K by e£ when necessary.

Figure 22 shows the composition of the command register

(and the cells in which the command is written).

I'liiii'iniiiiiiiiiB'iiiiiiiiiririiiiiiiiin
Y'zjr" ' r '' v~.~'
e. Operation I address IT address III address

code register register register
register

Fig. 22.

For recording 'Kq we shall use binary notation. The

permissible set of values of 'Kq will be 000000, 000001,

...,111111. We shall designate the conditional halt switch

in the computer by .

Ordinary execution of a command (arithmetic, logical,

and auxiliary commands for computational purposes) consists of:

-k-

1) properly converting the codes and sending them

according to the address; i .e., execution of an operation

of the form

f(I. 2KT! 2k2) = 'k3;

I. OPERATIONS OF CONTROL TRANSFER FROM LOCAL TO
CENTRAL AND FROM CENTRAL TO LOCAL

1. 'Kq = 011000 (PMUK)—transfer to local control.

By this command:

a) 0 = T;

b) 2c2 => K.

Thus, control is transferred to local; commands are

executed beginning with the number in local control

counter C2.

2) adding a 1 to counter if 'T = 1, or to

counter C2 if 'T = 0; i.e.,

'C1+T3 Cx;

'C2 + (1 - *T) =* C2;

3) branching to the next command whose number is in

counter Cx if 'I = 1, or in counter C2 if 'T = 0:

'('C1'T + 'C2 (1 - 'T)) = K.

Thus the special operations of the BESM are those

which change the state of control trigger T.

2. 'K2 ■ 011001 (PTsUK)—branch to central command

control. By this command:

a) 1 = T;

b) 2cx • K.

Thus, control is transferred to central; commands are

executed beginning with the address in central control

counter .

Here the contents of registers K|, K2, K3 are in­

significant .

3. 'Kq “ 011010 (IMUK)--change local Lcotnmandj control

counter:

a) 0 = T;

b) 'K3 • C2;

e) 2C2 - K.

Thus, if an operation is carried out in central

control, it then transfers to local and commands are

executed beginning with address 'K^. If an operation is

carried out in local control, it then continues, but

beginning with address 'K^. The contents of registers Kj

and K2 do not influence the result of the operation.

4. 'Kq = 011011 (ITsUK)--change central

command control counter:

a) 'C1'T + 'C2(l - 'T) + 1 » ('K2)3; 011011 » ('K2)o;

b) 1 = T;

c) 'K3 - CT;

d) 2C]L = K.

-6-

An operation is executed in the same manner as

above; however, the command with operational code

ITsUK* is sent according to address in the third

address is the address of the following command, increased

by 1 (point a) . The contents of register K^ do not affect

the result of the operation.

*Remember that ()^ designates bits which correspond
to the third address of a cell; the address is indicated
in the parentheses ().

The operation IMUK is convenient for executing a

branch to subroutines. For this purpose the basic

program is written in central control, and the subroutines

in local. Branching from central to local control for a

subroutine is coded by the command IMUK. Here the address

of the first command of the subroutine is entered into IIIA

[third address J of the command IMUK.

For return to the basic program from a subroutine,

there is the operation PTsUK, which permits return to the

interrupted place in the basic program (to the command _

following the command IMUK, from which the branch to the

subroutine was effected) . Here it is obvious that in the

process of executing a subroutine, the execution of.

commands which transfer control from local back to central

must be taken into special account. Thus, if during ex­

ecution of a certain subroutine it becomes necessary to

transfer to the program, the command ITsUK can be used.

By means of this command, a counter indicator of the central

control command (the place of exit from the basic program

to the subroutine) can be fixed in the III address of the

cell whose address is indicated in K2.

Let us now proceed to a list of the remaining BESM

operations.

II, CODE CONVERSION AND TRANSFER OPERATIONS

1. 'Kq = 000001 (+)—addition:

a) 2K1 + 2k2 « ’K3;

b) ,C1 + 'T = Cp 'C2 + (1 - 'T) => C2;

c) ' (’C-l 'T + 'C2 (1 - 'T)) =» K.

Prior to the addition of numbers, their exponents

are equalized. The result is normalized and rounded off.

2. 'KQ = 100001 (, +) is the same as 'KQ = 000001,

but without normalization.

The following commands are completed in the same

manner:

3. 'Kq = 000010 (-)—subtraction.

4. 'Kq = 100010 (, -)—subtraction without normalization.

5. 'Kq = 000011 (x)—multiplication.

6. 'Kq = 100011 (, x)—multiplication without nor­

malization .

7. 'Kq = 000100 (:)—division .

8. 'Kq - 000101 (+ P)—addition of exponents. The
2 2exponent of the number ZK2 is added to the number K., and

-8-

the normalized result is sent according to address 'K^.

9. 'Kq ■ 100101 (, + P)—the same as the preceding

operation, but without normalization.

10 and 11. 'Ko = 000110 and 'KQ - 100110 (- P) and

(, - P)—subtraction of exponents. The same as for 'Kg =

000101 and 'Kg - 100101, only the operation being ex­

ecuted is subtraction.

12. 'Kg 000111 (IPA)—a change in the exponent

according to the address.

B

The number is added to the exponent of number

^Kp and the normalized result is sent according to

address 'Kj. The sixth bit of Kj is taken as the sign bit.

13. 'Kq - 100111 (,IPA)--the same as for 'Kq = 000111,

but without normalization.

14 and 15. 'Ko = 001000 (x a) and 'Kg - 001001 (x b) —

multiplication with an output of twice the number of bits.

The operation is executed with two commands: by the command

'Kg = 001000, which is multiplication of the numbers

and without rounding, with normalization, and with

output of the first 32 bits of the result with their

exponent according to address 'K,; and by the command

(following it) 'Kg = 001001, which is normalization of 32

low-order bits of the accumulator (with the remaining

exponent from the preceding command), and output according

to address 'K^ ('K^ and in the latter command are not

used) .

-9-

16 and 17. *K q ■ 101000 and 'Kq = 101001—the same

as 14 and 15, but without normalization.

18 and 19. 'Ko - 001010 (: a) and 'Kq = 001011 (: b) —

division carried out with output of the remainder, similarly

as in the preceding operation.

20. 'Kq = 00110 (PCh)--normal transfer of a number.
2

The number K. is normalized and transferred according

to address 'Kg.

a) - 'K3,

• b) and c) are the same as for addition; 'K2 is not
used. The normalized code Sc. is designated by (^K-^)n.

21. 'Kq = 101100 (,PCh)--normal transfer of a number

without normalization.

22. 'Kq - 101100 and ’e^g = 1 (,PChT)--transfer of

a number for printing, fs printed.

23. 'Kq = 001100 and '= ^27 ~ ^28 =*

(PChR)--transfer of a number from the console control

registers.

If 'e26 “ 1’ c^e co^e from the trigger control register

is transferred; if ’Ej? = 1, transfer is from the second

diode register; if 'e2g “ 1, transfer is from the first

diode register.

24. 'Kq - 101100 and 'e26 = 1, or '€27 “ 1> or <e28 “ 1

(,PChR)--transfer of a number from the console control

registers without normalization.

-10-

25. 'KQ = 001101 (PCh-)--transfer of a number with a

sign change. A normalized number with the opposite

sign is transferred according to address 'K^. is not

used:
<- 4’n • 'K3-

26. 'Kq = 101101 (,PCh-)— transfer of a number with

a sign change and without normalization.

27. 'Kq «= 001110 (| PCh])--transfer of the modulus
of a number. The normalized number ^K^ is transferred

according to the modulus to address indicated by 'Kj

pKj = 'K3.11

28. 'Kq = 101110 (, |PCh|)--transfer of a number

according to the modulus without normalization.

29. 'Kq = 001111 (PCh+)--transfer of a number with

a sign change depending on the sign of another number.
The transferred number ^K^ is normalized; the sign of this

number is reversed, if the number ^K3 is negative, and

retained in the opposite case; the result is sent according

to address 'K^.

30. 'Kq = 101111 (,PCh+)--transfer of a number with

a sign change depending on the sign of another number,

without normalization.

31. 'Kq = 01000 (I)--transfer of the exponent of a
number. The exponent of the number ^K^ is in the form of

a normalized number with its own exponent, and is trans­

I
-11-

ferred according to address 'K^. 'Kj is not used.

32. 'Kq - 110000 (,1). Transfer of the exponent of

a number without normalization.

33. 'Kq = 010001 («-)--shift without exponents. The
shift of the number 2Ky by the number of bits equal to

the number 'K2, is to the left if sign 'K2 = 0, and to the

right if sign 'K2 = 1. Here 'e22 ta^en as the sign bit

(the 7th bit of register K2) (the code of the exponent is

neither shifted nor transferred); the result is sent

according to address 'Kj.

34. 'Kq ■ 110001 (,-)--shift over all bits. The

same as for 'Kq - 010001, but the shift occurs over all

bits.

*

35. 'Kq = 011101 (L)--logical multiplication. Digital
logical multiplication of codes and 2^ with placement

of the result according to address 'K3.

36. 'Kq » 010010 (SK)--addition of commands. Addi­
tion of the digital parts of the numbers ^K^ and ^2

carried out (including the signs of the numbers); the

exponent of the second number is not taken into account.

The result (without normalization) is sent according to

address 'K^.

is

37. 'Kq = 110010 (,SK)--cyclical addition. Codes
2 2and K2, considered as one integer, are summed up

cyclically (with transfer from the sign bit of the number to

the 1st bit of the exponent and from the exponent sign

-12-

bit to the low-order bit of the digital part of the num­

ber) ; the result is placed according to address 'K^.

38. 'Ko = 010011 or 110011 (TsCh)--division of |
2 . .an integral. The integral part of the number with its

sign is sent according to address 'K^ in the form of a

number with a fixed point after the low-order bit.

Its fractional part, reduced to a zero exponent, is sent

according to address 'K2.

III. CONTROL TRANSFER OPERATIONS

In addition to the control transfer operations cited

in the beginning, the following operations, which main­

tain the operating functions at either local or central

control, are found in BESM.

1. 'KQ = 010100 (<)--a comparison taking the signs

into account: _

'K3 (1 - 'T) + ’C2’T =* C2;
a) R < 2K2] 'K3'T + 'C1 (1 - T) => C1;*

,C1 + 'T « CT; 'C2 + (1 - ’T) => C2;

b) ’('C1'T + 'C2 (1 - 'T)) = K.
Thus, if 2K^ < 2K2, control is transferred according

to address 'K3; if 2K^ > 2K2, control is transferred to

the next command in sequence. The following two operations

are completed analogously.

2. ’Kq = 110100 (,<)--a comparison of equality:

•13-

'k3(1-'t) + ’c2't = c2;
a) R [2KX / 'K3'T + ’CjU-'T) = Cx;

’Cx + 'T = Cx; 'c2 + (l-'T) - c2;

b) '('C^'T + ’C2(1-'T)) = K.

3. 'Kq = 010101 (|<|)—a comparison according to

the modulus:

'K3(1-'T) + 'C2’T » C2;
a) R [|2k1I<|2k2|}'K3'T + (l-'T) => Cx;

•Cj + 't - Cp 'c2 + (l-'T) = c2;

b) '('Cj/T + 'C2(1-'T)) - K.

IV. OPERATIONS FOR USING EXTERNAL UNITS

1 and 2. 'Ko - 010110 (MZa) and 'KQ = 010111 (MZb)--

commands for return to external memory units (magnetic

recording). Operations are completed in two commands.

The first and last numbers of the external memory unit

code to which the operation refers, and the first address

of the internal memory unit cell with which the operation

is concerned, are indicated in the addresses of the com­

mands. The nature of the operation is additionally

determined by the first address of the MZa command (re­

cording, reading, or rewinding; drum or tape; the number

of the drum or tape). Thus, provision is made for re­

turn to perforated tape, magnetic drum, and magnetic tape.

•14-

3. Kq = 011100 (ost. usl.)—conditional stop

(by a tumbler). A stop occurs if special tumbler is

switched on ('T^ = 1), and in the opposite case, the next

command is completed; i.e.,

a) R {'T^ ■ 1) ost. [stopj C^ + ’T “ 'C2 +*

(l-'T) - C2;

b) '('Cj/T + ’C2(1-’T) - K.

4. Kq = 011111 (ost.)--stop.

A stop occurs with the corresponding signaling.

-15-

STRELA

The Strela, a general-purpose automatic digital com­

puter, has 43-bit words. Data is displayed in the

system in floating point with 36 bits designated for the

binary mantissa (the first bit is the sign of the man­

tissa), and 7 bits for the binary exponent (the first bit

is the sign of the exponent) (Fig. 23) .

Fig. 23.

We shall call 0 through 35 the mantissa register,

and 36 through 42 the exponent register, and shall desig­

nate the cells with an index of either m [mantissa] or

p [exponent].

For storing data in a binary-decimal word, 37

bits (one is the sign) are used for the mantissa, and 6

bits (one is the sign) for the exponent. The 36 digital

bits of the mantissa are divided into 9 tetrads, one for

each decimal place.

-16-

The command system is three-address with a normal

order of execution. For writing a command in a memory

cell, each address occupies 12 bits, the operational

code uses 6 bits, and one bit is for the control sign. The

distribution of bits over a cell in which a command is

written is shown in Fig. 24.

t ' r '' r
I address II address III address Control Comaand
register register register sign code

bit register

Fig. 24.

The Strela high-speed computer completes 2000-3000

operations per second. Internal storage, with a capacity

of 2048 cells, consists of cathode-ray tubes. In addi-'

tion to internal storage, there is a permanent storage. Here

is located the so-called constants-yielding unit (UVK),

in which certain frequently encountered constants

are permanently stored; numbers from 7400 to 7777 are

allocated to these cells. Also in the permanent storage

is a standard subroutines store (NSP), in which sub-
1 x routines for computation of elementary functions (—, e ,

sin x, In x and others) are located.

-17-

The auxiliary storage is located on two reels of

ferromagnetic tape. The magnetic tapes are divided into

zones. One tape can have up to 511 zones; on each zone

up to 2048 digits can be recorded. Accordingly, magnetic

tape zones are numbered from 4001 to 4777, and from 5001

to 5777. Reading codes from each zone can be done in any

groups, beginning with the first code.

Input is from punched cards, and output is onto

punched cards. There is a unit for transfer of infor­

mation from punched cards to printout. Each word

(data or command) is punched in a card in the form of

one line; in all, 12 words are punched into a card.

For punching commands, each octal digit is punched

in the form of a triad of binary digits; the control sign

is punched in the form of one binary digit. For punching

decimal numbers each decimal digit is punched in the

form of a tetrad, and the sign is in the form of one

binary number. Conversion of numbers into binary is

automatic.

For a description of operations we need the following

designations :

1) s--the command counter,

2) K--the command register,

3) G—the command register for a group operation,

4) A--the address modification register,

■18-

5) œ--the trigger for indication of conditional
transfer,

6) T--the operating condition toggle switch.

We shall divide command register K, corresponding

to the given placement of commands (see Fig. 24), into

bit groups (registers) (see Table 11).

Table 11

Bit groups of the
command register

Designation and name of
bit groups (registers)

0-11 k^ - register of I address

12 - 23 k2 - register of II address

24 - 35 k^ - register of III address

36 a - control sign bit

27 - 42 kn - register of the command
code

The command register for a group operation G (and

the cells) is broken down into such registers as needed.

They are designated by the letter "G" (or by the number

of the cell) with a corresponding index (0, 1, 2, 3).

The indicated registers can contain octal codes :

'k1, 'k2, 'k3 = 0000; 0001; ...; 7777;

'a = 0; 1;

’kQ =00; 01; ...; 77.

-19-

However, *kj, 'k2, 'k-j, in all except certain specific

cases, are less than 4000 (2048 in a decimal system), which

corresponds to the ZU [storage) capacity of the computer.

Provision has been made for a so-called controlled

stops system, transfer to which is provided by tumbler

T('T =1). In this event, after the execution of each

command in which ’a - 1, the computer stops. In other

words, after the completion of each command, the following

action is executed:

R ('a x *T = 1) ost. Lstopj

Depending on the code of 'kg, subsequent operations

are carried out.

I. ARITHMETIC OPERATIONS

1. 'kg ■ 01--addition. The computer completes the

following actions : •
a) ^k| + 2k2 • 'kgj

b> S(2k3<-<» j:».
c) 's + 1 • s;
d) 2s = K.

Action a) denotes addition of codes 2kj, ^k2 with

normalization of the result and its transfer according

to address 'kjj b) is the processing of the signal m (used

in conditional control transfer commands; see below);

-20-

c) and d) denote transfer to the next command, and are

the same for all arithmetic operations. In addition to

this, a stop occurs upon overflow--i.e., if the exponent

of the result is greater than 77; if, however, it is

smaller than the minimum permissible (77), than the result

is considered to be zero. Therefore action a) here, as

in other arithmetic operations, must be written in greater

detail in the form:

a) R ((2kr + 2k2)p > 77} ost. Estop];

*7 o k. "4" 2k * k«,,
R {(\ + %)_ > -77} 1 2 J

1 z p 0 = k3.

2. 'kg = 03--subtraction.

3. ’kg = 04--modulus subtraction.

These operations are carried out the same as in

addition, but with a corresponding change in the sign of

the operation as in a).

4. ’kg = (^--multiplication:
a) 2k| x 2k2 “ ’k2;

») r uSi 11’

c) and d).

5. 'kg = 06--addition of exponents and

6. ’kg = 07--subtraction of exponents:

a) •<■!«!)„ - Ck3)m;

'<'kl>p + '<’k2>p ■ <’k3>p;

-21-

l«iu;
b) R {(’k3) > 1]

J p “ 0 = i;

c) and d).

7. 'kg = 10--carry-over of a number with the sign

taken from another number:
a) 12k1| V sign 2k2 => 'k3;

1 = ;
b) R {'('k3)D Z UJ P 0 = i;

c) and d).

8. 'kg = 12--addition of numbers without rounding:
a) 2k^ + 2k2 = 'k3;*

□ !=»«>;
b) R {Zkq = 0}

J 0 = m;

c) and d),
2

9. 'kg - 17--the control summing of codes k^ and
2k2, understood as indivisible binary codes, with carry­

over from the high-order bit to the low-order bit:
a) 2k1(Ts +)2k2 =» 'k3;

b) 0 = i;

c) and d).

10. 'kg = 02--special addition (for commands) and

11. 'kg = 15--special subtraction (for commands):

a) '('ki)i ± '('k2^i <'k3>i’ where i = 1,2,3;*

' < ’kl>0 ** ('k3^0 ’

b) 0 uu;

c) and d).

-22-

II. LOGICAL OPERATIONS

1. 'kg = ll--digital logical multiplication:
a) (2kp A (2k2) = 'k3 (step-by-step)

9 1 s w;
b) R = 0)

J 0 =» cu;

c) and d).

2. ’kg = 13--digital logical addition:
a) V (%) = 'k3 (step-by-step)

9 1 ■» u>;
b) R (kn - 0}

J 0 - id;

c) and d).

3. ’kg = 14 — shift. Two modifications of this

operation are possible. If 'k2 < 4000—i.e., if it is the
9

address of the operative cell--then the code k^ is shifted

by the number of bits equal to the exponent of the number
2
k2; if the sign of the exponent is +, the shift is to the

left, and if it is -, the shift is to the right. If 'k2 ”

4000 + I or 'k2 = 5000 + I, then the shift is -t bits

to the left. If however, 'k2 - 4100 + I or 'k2 = 5100 + 4,

then the shift is 4 bits to the right (-t- < 77) .

Designating the shift of the code B by a bits by

B a a (left, if a > 0, or right if a < 0), we shall write

the operation in address form:

-23-

k| •* ’ (*k 2) = *kj»

2)
2kt - ('k2 - 4000) = *k 3;

3)
2kx - (4100 - ’k2) - ’k3;

4)
2kx » ('k2 - 5000) ■» ’k3;

2kT - (5100 - *k 2) • ’k3;

a) 1) R {'k2 < 4000}

2) R {'k2 < 4100}

3) R {'k2 < 5000}

4) R {'k2 < 5100}

□ 1 a i«;
b) R [% » 0}

J 0 - u>;

c) and d).

4. 'kg = 16--a digital operation "non-equivalent"

(see Chapter II):
a) C2^ - (2k2) • 'k3 (step-by-step);

b) R (2k, 4 01 1 ■ “5
J 0 = uj;

c) and d).

5. 'kg = 26--comparison and stop for noncoincidence:

a), b), d) are the same as in 4;

ost. Estop]
c) R^u'“1^is + i = c

III. CONDITIONAL BRANCHING COMMANDS AND
PRELIMINARY COMMANDS FOR GROUP OPERATIONS

1. 'kg ■ 20--conditional branch of the first type:
a) R {’uu = 0} 'kl “ s;

'k2 s s;

-24-

b) 0 ■» 'k3;
c) 2s » K.

2. 'kg = 27--conditional branch of the second type:
a) R {'« - 0) 'kl " s;

'k2 = s;

b) 's + 1 - (’k3)i;

's + 1 • ('k3)2;

*k3 => ('k3)3;

20 = ('k3)0.

Point a) is conditional transfer according to uj. Point

b) sends the unconditional branch command according to

address (*k 3).
b) 2s - K.

3. 'k0 = 30, 31, 32, 33, 34, 35, 36, 37--preliminary

commands for group operations.

Group operations consist of two commands: a pre- .

liminary command and an execution command (the code of

the latter is an arbitrary command of an arithmetic or

logical operation).

A number, which is 1 less than the number of com­

pletions of the execution command, is shown in the II

address in the preliminary command.

The operation code of the preliminary command con­

tains information concerning the rule for modifying

addresses of an execution command. In addition to this,

-25-

the address indicating where a 0 is to be sent, is shown

in the III address of the preliminary command.

Let us designate by c^, respectively, the 40th,

41st, and 42nd bits of register K (that is, the three low-

order bits of the register for the operation code kg).

Group operations are described by the following program:

a) 0 - A; 0 =» 'k3;

b) ’('s + 1) =» G;

c) ’ (G^ + • 'A)6 '('G2 + 'e2’A) • 'G3 + 'e3'A;*

d) 'A + 1 - A;

e) R {'A < ’k2} b);

f) ’ s + 2 = s ;
g) 2s = K.

Here we designate any arithmetic or logical operation by

6 .

Point a) is clearing of modification register A and

clearing of a certain cell ’k3 (if the latter clearing is

not necessary, a zero is placed in the III address).

Point b) sends the execution command to group operations

register G.

Point c) is execution of the command contained in

register G with address modification according to the three

last bits of the operation code of the preliminary command;

address G*, for which - 1 (i = 1, 2, 3), is increased

by the contents of register A (since upon the first com­

pletion of this point register A contains zero, the

-26-

command is executed the first time in the same form as

it was encoded).

Point d) is an increment of the contents of register

A by 1.

Point e) is a verification of the end of group oper­

ations; as a result action c) will be repeated (’kg + 1)

times.

Points f) and g) are transfer to the execution of the

command, followed by its execution.

IV. COMMANDS FOR THE USE OF EXTERNAL UNITS

1. 'kg = 25--placement of zone 'k^ of the magnetic

tape under the reading head.

2. 'kp = 43--transfer from magnetic tape [ML]

to core memory. The word (’k? + 1) from zone 'k^

of the magnetic tape is transferred to cells ’kg, 'kg + 1,

.... ’kg + ’kg. We write this conventionally in the form

'[(’k,)ML] • I j .

\k3 + k2 /

3. 'kg = 46—transfer from core storage to magnetic

tape:

('k, + 1) code

-27-

is transferred from core to zone 'k^ of the magnetic

tape.

Conventionally, we shall designate this:

kl \ = (%) ML.

\ kl + k2

Here the zone of the magnetic tape number ' k^ is designated

by ('k^ML.

4. 'kp = 41--transfer from punched cards [PK]

to core storage. ('k2 + 1) code is transferred from

punched cards to cells

'k^, 'k^ + 1,..., 'k^ + ’k2;

,pK- [, \) •

vk3 + k2 /

5. 'kp = 44--transfer from core cells to punched

cards. ('k2 + 1) code from cells 'k^, 'k^ +1, ...9

'k-^ + 'k2 is transferred to punched cards:

6. 'kg = 45—transfer from certain cells

in core to others. ('k2 + 1) code from cells 'k^,

'k^ +1, ..., 'k^ + 'k2 is transferred to cells 'k^,

-28-

7. 'kg = 60--group transfer with control. Various

modifications of this operation are possible. If

'k^ = 0000, 0001 < 'k3 < 3777,

then transfer from punched cards to core is carried out.

If

0001 < 'kt < 3777, 'k3 - 0000,

transfer is from core to punched cards. If

0001 < 'k3 < 3777 ,

4001 < 'kr < 4777 or 5001 < *k 3 < 5777,

transfer is from magnetic tape to core. If

0001 < 'kT < 3777,

4001 < 'k3 < 4777 or 5001 < 'k3 < 5777,

transfer is from core to magnetic tape. If

0001 < ’kj. < 3777, 0001 < 'k3 < 3777,

transfer is from certain cells of core to others. A

cyclic summation of ('kg » 17) codes is carried out before

and after transfer, simultaneously with execution of the

-29-

transfer. The resultant sums are compared and should they

not coincide, the computer halts.
28. Operation halt. kg = 40. The numbers and

2
k£ are output to the console.

V. STANDARD ROUTINES

The commands described below are group operations

using standard subroutines in a permanent memory. After

completion of these subroutines, control is transferred

to the next command of the main program. The next command

must not be a conditional transfer (codes 20 and 27),

since u) is not treated in these operations.

1. 'kg = 62—computation of a reciprocal:

----------------- ■» ’k, + i, where i = 0, l,...,’k9.•(■k1 + l) 3 2

2. ’kg = 63--computation of square root:

"V '('kT + i) = 'kj + i, i = 0,1,...,’k£

Analogously the following operations are completed:

3. 'kg = 64—computation of an exponential function.

4. 'kg - 66—computation of a logarithm.

5. 'kg = 67--computation of a sine.

6. 'kg = 73—computation of an arctangent.

7. ’kg = 74—computation of an arcsine.

In all of these operations a stop occurs in case of

overflow in cell 'k^ + i, and in case of inapplicability

I
-30-

of the function to code 'k^ + i in the field of real

numbers.

8. 'kg - 70--conversion of codes from binary to

binary-decimal notation:

'(* kl + i)dec • 'k3 + i, where i - 0, 1, ...» 'k2.

9. 'kg = 72--the reverse operation:

’<'kl + »bln. - 'k3 + 1, 1 - 0.1......... ’k2 .

The following actions are also carried out:

's + l = s;"s = K.

-31-

URAL

The Ural general-purpose automatic digital computer

uses 36-bit full, or 18-bit partially full words. Commands

are in a single-address system, and are coded in partially

filled cells; five bits are for the operational code, 12

are for the address, and 1 is for changing (modifiability)

of the command.

A fixed point system is used; the first bit is the

sign.

When data is stored in short cells, the bits

are distributed as shown in Fig. 25.

Sign Digital bits
of the
number

Fig. 25.

The distribution of bits in the storing of data

in the so-called long (i.e., full) cells is shown in

Fig. 26 for binary codes, and in Fig. 27 for binary-decimal.

Short cell with Short cell with
even address 2n address 2n+l

. ------ r — . . 1 ~

ljl,lllllllllllllllllll’llllllllllllllllll
V................... i '

Sign Digital bits
of the
“”b,r Fig. 26

-32-

The speed of the computer is 100 operations per

second. The internal memory capacity (on a magnetic drum)

is 2048 short cells or 1024 full cells. Full cells have

Short cell with Short cell with

iiiiiiiiiiiiiiiiiiiTiiiiiiiiiiiiiiliQ

number
Tetrad numbers Partial

tetrad

Fig. 27.

only even addresses. Auxiliary storage is on magnetic

tapes. Input is from perforated tapes, and output can be

onto perforated tape or paper tape.

Special registers and keys of the Ural:

1) S--the accumulator;

2) r--the arithmetic unit register;

3) C--the command counter;

4) K--the command register;

5) w--the trigger indicator for conditional control

transfer;

6) Ts--the cycle register;

7) K^(i = 1,2,...,7)--the keys;

8) ^--toggle switch 1;

9) T2--toggle switch 2.

-33-

Having absorbed these letter designators, let us

proceed to a description of the fundamental operations of

the Ural.

A single operation cycle of the Ural consists of:

1) execution of command K--that is, commands whose

code is stored in the command register at that time;

2) sending the code of the next command to the

command register.

For a description of the set of basic operations

of the Ural, we shall present a breakdown of the bits

(registers) in the command register (see Table 12).

Table 12

Bits of the Ural command
register (left to right)

Designation and use of
groups of bits (registers)

1
c0--the bit for changing

(modifiability) of
command

2 - 6 k„--the operation code
u register

7 e--the bit for indicating
a full cell

8 - 18 k—the command address
register

Fig. 28 shows a breakdown of the command register

(and of a cell when a command is stored in it) into groups

of bits.

-34-

/ii’i 11 iTi.’i 111 i i i itTj
Bit for Op code Full cell Address register

indicating register indicator
modifiability

Fig. 28.

The sets of permissible codes for storing in the

indicated registers (in octal notation) are the following:

'e0> 'e = 0; 1;

'k0 •= 00, 01,....37;

'k - 0000, 0001,...,3777.

I. ARITHMETIC OPERATIONS

1. ’kg - 01--addition. The following actions are

completed by this command:

a) 'S + '('k - 'e0’Ts) = S;

sign 'S v |’C'k - ’e0'Ts)| = r;

b) R (sign 'S-U

c) C + 1 - C;*
d) 2C » K.

If 'eg = 0--i.e., there is no indication of varying
the command--the operation 'S + ^k • S is executed.

■35-

If, however, 'eg = 1, the address is modified; i.e.,

it is decreased by the contents of the cycle register.

Here, if 'e =0, the contents of the partially full

cell with the address 'k is selected; if 'e =1, the con­

tents of the full cell with 'k is selected. In the latter

case, 'k must be an even number.

b) designates sending a 1 or a 0 to the trigger indica­

tor for conditional transfer of control depending

upon the sign of the number in the accumulator.

c) and d) consist of preparation for the execution

of the next command in numerical sequence.

Actions b), c), and d) are completed also upon

execution of all other commands of a given group. The

same thing can be said for the e bit. In further operational

descriptions nothing more will be said about this.

2. 'kg = 02--sending to the accumulator:

a) '('k - 'e0'Ts) = S; *<’k - ’eq'Ts) • r;

b), c) and d), the same as for 'kg = 01.

3. 'kg = 03--subtraction:

a) 'S - ’('k - 'e0'Ts) = S:

sign 'S V |'('k - 'eg'Ts) | => r.

4. 1 kg = 04 (the same as for 'kg = 03; only the

operation executed is modulus subtraction): _______

a) |'S| - | '('k - ’e0'Ts)| => S;

sign 'SV |'('k - 'eg'Ts)| = r.

-36-

5. 1 kg = 05—multiplication with storage in the

accumulator:

a) *r x ’('k - 'cg'Ts) + ’S ® S; 0 ■ r;

the contents of a cell is multiplied by the contents of

the accumulator register and the result is added to the

contents of the accumulator.

6. 'kg - 06--multiplication:

a) *S x '('k - *€ q’Ts) =» S;

0 => r.

7. 'kg - 07--division:

a) 'S:’('k - 'sg'Ts) = S, 0 ■» r.

Besides the registers indicated in the list, there is
an overflow register tp for various conditions, and switches
cc^ and ?2 connected with it.

If, upon execution of arithmetic operations 01, 03,

04, 05, 06, 07,

I'sl < 1 ,

a 1 is sent to the cp trigger:

1 " cp;

if (’S) < 1, a 0 is sent to cp:

0 =» co.

Here, if 'co = 1 and

a) 'cp^ = 1,

■37-

then the action

'C + 1 « C

is completed (transfer to the next command of the program);

if

b) = 0, ’e>2 = 1>

then the computer stops; if

c) ’tOj = 0, '«₽2 ” 0»

then 'C + 2 » C is executed; that is, one command is

skipped.

• 8. 'kg = 26. Cyclical addition of the contents of

the accumulator with the contents of cell *k - 'tg'Ts

(with transfer from the high-order to the low-order bit).

The role of bits eg and e is the same as for the preceding

operations. Also, points b), c), and d) are executed.

II. LOGICAL OPERATIONS

9. 'kg = 10. Assumption of the sign of the number

by the contents of the accumulator:

a) |'Sj v sign '('k - 'sq'Ts) • S (= r);

l = u;;
; b) R (sign 'S - 1}

0 = u);
c) 'C + 1 • C;

1 . 2d) ZC = K.

10. ’kg ■ 11. Shift of the contents of register r

of the accumulator (including the sign bit) by the number

-38-

of bits which corresponds to the modulus of the number

distributed in bits 13 through 18 of the accumulator S:

a) to the left if sign 1S = 0, and to the righrf|

if sign ’S = 1. The result of the shift is placed in

the accumulator; 0 a r;

1 s u;;
b) R {'S = 0}

0 = m;
c) 'C + 1 - C;
d) 2C « K.

The operation does not depend on 'eg, 'e., 'k.

11. 'kg = 12. Digital logical multiplication:

a) 'S A '('k - ’€0'Ts) - S (=> r),

where 'k is an even number;

1 = w;
b) R {S - 0}*

0 = id;

c) 'C + 1 - C;
a) 2c - k.

12. ’kg = 13. The same as for 'kg » 12; only the

executed operation is digital logical addition.

13. ’kg = 14--digital logical operation "non­

equivalent ="; the bits of the result are clarified in

Table 13.

-39-

I
i

Table 13

a) ['S = '('k - ’e0'Ts)] » S (« r);

b) R {' S •= 0} ° U)’

1 = <u;

c) 'C + 1 3 C;
d) 2C • K.

14. 'kg = 15—normalization:

a) the contents of the accumulator is shifted left

by the number of bits equal to the number of zeros between

the decimal point and the first significant digit if |’S| <

and is shifted to the right one bit if |'S| > 1. After

the shift, the number corresponding to the number of shifts,

in the first case negative, and in the second case positive,

is recorded according to the address 'k - Cq'Ts, and the

exponent of the number is fixed in the accumulator. The

sign of the exponent is fixed in the accumulator in the

sign bit; the low-order bit of the exponent is the 19th

bit of the accumulator.

1 =» uu;
b) R {'('k - 'e-’Ts) - 0}

u 0 3 w;

c) 'C + 1 » C;

-40-

d) 2C » K.

15. k = 16. Sending from the accumulator according

to address :

*

a) 'S =» 'k - 'eo'Ts;

1 ® a>;
b) R {sign S “ 1)

0 = tv;
*

c) C + 1 - C;*
d) 2C => K.

16. 'kg = 17. Sending to the accumulator register:

a) '('k - 'Cg’Ts) » r;

1 • tv;
b) R {’r = 0}

0 = oj ;

c) 'C + 1 » C;
d) 2C • K.

17. ’kg = 20. Sending to the accumulator:

a) 'k - 'gq'Ts ■ S (= r) .

The number ’k - 'fig’Ts is placed in the accumulator (from

the 7th through the 18th bits), and not the contents of

this address as in operation 02. The contents e is con­

sidered the sign of the number 'k - 'sq'Ts, and ' e is

sent to the sign bit of the accumulator;

1 =» iu;
b) R {sign ’S = 1)

0 = m;

c) 'C + 1 => C;
d) 2C • K.

III. CONTROL TRANSFER OPERATIONS

Control transfer operations do not change the con­

tents of the addresses in the computer, and concern only

the contents of certain special registers.

18. 'kg = 21. Conditional control transfer:

'k - 'en’Ts = C;
a) R ('ud =1} U

'C + 1 • C;
b) 2C = K.

If 1 is in trigger w, transfer is made to the execution

of the command preserved according to address 'k - 1 Eq’Ts,

and in the opposite case, transfer is to the next command.

19. 'kg ■ 22—unconditional transfer of control:

a) 'k - 'eo Ts " c>*
b) 2C - K.

20. ’kg - 23—control transfer by key. If key 'k

is switched on, one command is omitted; if it is not on,

transfer is made to the next command; that is:

' r + 2 = c •
a) R {'K,. = 1} ’

K 'C + 1 - C;
b) 2C - K.

21. 'kg “ 25—beginning of a group operation.

The contents of cycle register Ts is prepared by this

command:

a) ’k = Ts;

b) 'C + 1 ■» C;

-42-

c) 2C => K.

22. ’kg = 24—the end of a group operation:

'k - 'en'Ts =» C; 'Ts - 'e - 1 ® Ts;
a) R {’Ts /0} 0

•C + 1 » C;
b) 2C » K.

a) signifies transfer of control to the cycle (to

the command stored according to address 'k - ’sq’Ts) if

'Ts / 0, and a decrease in the contents of cycle register

Ts by 1 if 'e = 0 (for a group operation on short cells),

and a decrease by two if 'e - 1 (for a group operation

on full cells) ; in the opposite case, exit is made from

the cycle.

23. 'kg = 30. Command change. By this command:

a) ’k - ’tg'Ts » K;

b) 'C + 1 » C;
c) 'K + 2C - K.

Thus, the "next" command enters the command register,

modified by the quantity of the contents of address

'k - 'eq'Ts.

24. 'kg = 37. The computer stops on this command,

and in addition, sends the contents of cell k - 'Cg'Ts

to the accumulator:

*

*('k - ’eg’Ts) = S.

-43-

IV. OPERATIONS FOR USE OF EXTERNAL UNITS

25. 'kg = 31--a preparatory command for a

transfer operation; 'k is the address of the first cell

of the internal memory (a magnetic drum), with which the

operation begins. Operations for using external units are

coded by a sequence of three commands:

31 a ;

BT P ;

oo Y .

Here 31, Bp 00 are codes corresponding to register

kg; a, B, and Y are codes corresponding to register k.

Here the following values are allowed for B^:

Bx = 01; 02; 03;

which also determine the type of operation; B is the zone

number of magnetic and perforated tape.

1) B^ = 01—executes a transfer from the input

unit (perforated tape) to the internal memory (magnetic

drum).

2) B^ = 02—executes a transfer from the external

(magnetic tape) to the internal memory unit.

3) Bi = 03—executes a transfer from the internal

to the external memory units.

In each of these cases the code Y determines the

address of the next cell of the internal memory, to which

the operation is being transferred.

-44-

After transfer, the next command is completed.

26. 'kg = 32. Printout of the contents of the

accumulator. Here, if ’T^ = 1, the printout proceeds on

paper tape; if 'T, = 0, printout is on perforated tape;

if 'T2 = 1, printout is in octal codes (output of the

program); if = 0, printout is in decimal (output of

the numerical material).

27. ’kg = 34—omission of a line on paper tape.

-45-

M-3

The M-3 automatic digital computer uses 31-bit words,

and has fixed point. One bit is the sign bit and 30 are

digital (Fig. 29).

For recording numbers in a binary-decimal system,

the last two bits are not used, and seven decimal digits

are in the remaining 28 bits.

The command system is two-address with sequential

execution. The operational code occupies six bits;

the addresses, 12 bits each. The scheme for the distribution

of bits over a cell for storing a command is shown in

Fig. 30.

Sign Digital bits
of the

Fig. 29

Sign Command I address II address
of the code register register
number register

Fig. 30

-46-

Table 14

kg— the
code
register

Bit groups of
the command
register

Designation and name of bit groups
(registers)

1-3 kA,—the first register of the command
code

4-6 kn9—the second register of the command
u code

7 - 18 k1--the I address register

19 - 30 k2"-the II address register

The internal memory of the computer consists of 2048

cells (numbered from 0000 to 3777 in octal) and is located

on a magnetic drum. The speed of the computer is 30

operations per second. The arithmetic unit and control

unit are high-speed. Therefore replacing the magnetic

drum with a memory unit of ferrite cores increases the speed

to 1500 operations per second. Input is from perforated

paper tape, and output is printed. Cell 0000, unlike the

Strela, BESM, and Kiev computers, is a normal cell (not

containing the code + 0).

For a description of operations we introduce the

designations:

1) C—the command counter,

2) K--the command register,

3) r—the arithmetic unit register,

4) w--the trigger for indicating conditional transfer.

-47-

We shall divide the command register K into bit

groups (registers) (see Table 14). The value 'kp2

determines the type of operation (see Table 15).

Table 15

Type of Operation ' k02

Addition 0

Subtraction 1

Multiplication 3

Division 2

Digital logical
multiplication 6

The value 'kp^ determines the operation to be

carried out. Let 0 designate any of the operations

shown in the table. The computer executes subsequent

operations depending on the nature of 'kp^.

I. ARITHMETIC OPERATIONS

a) 2k^ 6 ^2 =» r; r =» 'k2>*

1 » iu;
b) R {'r < - 0]

0 » u> ;

c) 'c + 1 =» C;
d) 2C = K.

-48-

In other words, in this case the addresses of the

arguments of an operation are coded in the addresses

of the command; the result of the operation is contained

according to the second address and in r--the arithmetic

unit register. Point b) is treatment of the sign u>,

used in conditional control transfer commands.

Points b), c), and d), transfer to execution of

the next command, are the same for all commands of this

group.

(The contents of address 'k^, unlike the case 'kg^ = 0,

is not changed by the operation.)

(The operation 6 is executed upon the contents of r—

the arithmetic unit register and cell 'k^; the result is

placed in register r according to address ^2«)

In this case, the following operations are executed:

-49-

a) 2kTe2k2 • r;

•r = 'k2;

print 'r.

(*r is printed on paper tape.)

6. 'k01-5.

a) |2kjJ 6|2k2 • r.

7. ’k01 = 6.

'rG2^ • r;

'r - *k 2;

print ' r.

8. 'kQ1 - 7.

11 r 16 12k^ | =» r.

II. CONTROL TRANSFER COMMANDS

1. 'kg = 24. Unconditional transfer according to

the first address:

a) 'r = 'k2;

b) ’kL » C;
c) 2C • K.

(The contents of r, the arithmetic unit register, is sent

simultaneously according to address ’k2.)

2. 'kg = 64. Unconditional transfer according to

the first address with printing of the contents of register

1

-50-

a) 'r 3 'k2;

b) print ’r;

c) ’kj^ “ C; !
d) 2C » K.

3. ’kg = 74. Unconditional transfer according to

the second address (’k^ “ 0):

a) |'r| • r;

b) 'k2 • C;
c) 2C - K.

4. 'kg = 34. Conditional transfer:

’k. = C;
a) R {'«) = 1} 1

’k2 - C;
b) 2c - K.

5. 'kg ■ 37. Stop:
a) 2k^ is put out on the console;

b) stop.

III. INPUT (OUTPUT) AND TRANSFER OPERATIONS

1. 'kg “07, 27. Input from perforated tape [PL]

(’4 - 0):

a) 'PL = 'k2;

b) 'C + 1 = C;
c) 2C - K.

One code from the perforated tape is transferred to memory

cell *k 2.

-51-

2. ’kg ■ 05, 15. Transfer:

a) ^k^ = 'k£;

b) 'C + 1 • C;
c) 2C • K.

3. ’kg =45, 55. Transfer with printing:

a) 2k^ = ^2?

b) print ^k-p

c) 'C + 1 = C;
d) 2C « K.

KIEV

The Kiev general-purpose automatic digital computer

uses 41-bit words. For commands in a three-address

system five bits are provided for the operation code and

12 bits for each address. The first bit of each address

is used as an address modification (changeability) indi­

cator. It has fixed point and the first bit is the sign

bit.

The distribution of bits over a cell when a binary

number is recorded is shown in Fig. 31.

frinilWIIIIIIIIIIIHIIIIIIIIIIIIIIIIII
I '

Sign Digital bits
of the
number

Fig. 31.

The speed of the computer is 15-20 thousand addition

type operations per second and 3-4 thousand multiplication

and division type operations per second, or an average

of 9 thousand operations per second. The capacity of the

internal memory unit (VZU) is 2048 cells; the external

memory is on magnetic drums and tapes. The internal

memory contains both operative and passive cells. Passive

-53-

cells are of three types:

a) Soldered—permanent,

b) Soldered--removable,

c) Plugged in--removable.

The permanently soldered memory is designed for storing

the more frequently encountered constants and subroutines.

The removably soldered memory is in the form of soldered

blocks designed for storing various standard subroutines,

and can be connected for operation according to need.

• The eight cells of the plug-board memory represent sets

of tumbler selectors, by means of which various codes can

be introduced by hand. Conversion of data from

decimal to binary is combined with input, and does not

require additional time. Input is from perforated tape,

and output is onto perforated tape or by printer; facility

for punched card use has been provided.

In addition to the cells of the VZU with addresses

0000 + 3777 in octal, the Kiev has the following special

registers:

1) C--the command counter (11-bit)

2) K--the command register (41-bit)

3) R—the return register (11-bit)

4) Ts—the cycle register (10-bit)

-54-

5) A--the address modification register (10-bit)

6) T--the register-trigger for emergency stop (1-bit).

For a description of operations including the operation

of these registers, we shall limit ourselves to alphabetic

designations--addresses, which we shall assume to be dif­

ferent from the address codes of the VZU.

According to the principle of program control (see

Chapter II), a separate operational cycle is used to ex­

ecute the command 'K—i.e., a command whose code is stored

at a given moment in the command register--and to send

to register K the code of the next command.

Execution of command K depends in turn on its con­

tents (the code).

For storing a number (address) of the "next" command

in the Kiev, command counter C is used, as in many other

computers.

For convenience in describing the set of elementary

operations carried out by the Kiev1s commands, we shall

divide the bit groups (registers) in command register

K, as is shown in Table 16. Such a division is

carried out when necessary also in the cells of the VZU.

The command register (and the memory cell in which

a command is stored) is broken down as shown in Fig. 32.

-55-

Table 16

Bits of the Kiev
command register
(left to right)

Designation and name of bit groups
(registers)

1 - 5 kg--the operations 1 code register

6 e,--the bit which
bility of the

indicates modifia­
I address

7 - 17 k^'-the I address register

18 e?--the bit which
bility of the

indicates modifia-
II address

19 - 29 k2"-the II address register

30 e,--the bit which
bility of the

indicates modifia-
III address

31 - 41 kj--the III address register

Fig. 32.

The following octal codes can be stored in the indi-

cated registers:

-56-

'k0 = 00, 01, 02, ..., 37;

*el’ *e2’ **3 “ °’ 1;

’kx, 'k2, 'k3 = 0000, 0001, 3777.

Depending on 'kg, the operation code, the computer

executes subsequent operations.

I■ ARITHMETIC OPERATIONS

1. 'kg ■ 01. Addition "+". For this operation

the computer completes the following actions:

a) addition of numbers which are the contents of

addresses ’k^ + 'e^'A and 'k2 + 'e2’A, and sending of the

result of the addition according to address k 3 + ’e^’A:*

'(’kj^ + 'ej'A) + *('k 2 + 'e2'A) • *k 3 + 'e3'A;

b) incrementing the contents of command counter C

by 1:

'C + 1 » C;

c) sending the next command to command register K:

Point a) designates that for *e. = 1 (i = 1,2,3), the

corresponding address is modified; specifically, it is

increased by the value of the contents of address modifi­

cation register A. For = 0, the operation is ex­

ecuted directly according to the address. Points b) and

■57-

c) designate preparation for the execution of the next

command in numerical order.

These features will refer to all operations of a

given group.

2. 'kg ■ 02. Subtraction The same as for "+"

only the executed operation is subtraction; i.e.,

a) '('k^ + 'e^'A) - ’('kg + 'eg'A) ° 'kg + ,e3A»* *

b) 'C + 1 » C;
c) 2C « K.

3. 'kg ■ 03. Addition of commands "+^":

a) |'(’k^ + ’e^A) + |'('k2 + 'e2'A)||v sign

'('kg + ’e2’A) =» 'kg + 'e^'A;

b) 'C + 1 = C,
c) 2C • K.

The operation "+j" differs from addition "+" in

that here the contents of cell '('k^ + '£^'A)--the re­

addressing constant—is added to the contents of cell

'('kg + ’eg'A)—i-e., to its modulus—which is considered

as command code, and the sign of command '('kg + ’^A)

is appropriated to the result.

4. 'kg = 06. Modulus subtraction The same

as but the diminuend and subtrahend are moduli of

the corresponding codes.

-58-

5. 'kg ■ 07. Cyclical addition, "Ts +", is addition

of codes with transfer from the high order-bit to the low-

order bit. As in the preceding operations, address modifi­

cation is possible. The following operations are completed

analogously:

6. 'kg = 10. Multiplication without rounding, "x".

7. ’kg - 11. Multiplication with rounding, " (x)

8. 'kg ■ 12. Division,

In addition to the above, for completion of "+",

1 is sent to register T, if the result of the operation

turns out to be greater than 1, according to the modulus;

and 0 in the opposite case.

In a corresponding arrangement for the emergency

stop toggle switch, sending

1 => T

designates stop.

II . LOGICAL OPERATIONS

9. 'kg = 35. Normalization.

a) The number '('k^ + 'e^'A) is normalized, the ex­

ponent of the number is placed in the six low-order bits

of cell ('k2 + ^2'A), and the mantissa is according to

address 'k^ + ’e^'A:

b) ’C + 1 » C;
c) 2C • K.

-59-

10. 'kg ■ 13. Logical shift.

a) The code '('k^ + 'e^’A) (including the sign bit)

is shifted by the number of bits indicated in the III

address of cell 'k2 + €2A, right or left, depending on

the sign of this number; the result is placed according

to address ’kj + 'e-j'A;

**

b) ’C + 1 » C;
c) 2C - K.

11. ’kp = 14. Digital logical addition "v" (see

Chapter II):

a) ' ('k^ + ’e^'A) V ’(’k2 + 'e2,A) “ C’k3 + 'e3 A) >*

b) 'C + 1 • C;
c) 2C » K.

The following two operations are completed analogously.

12. 'kp = 15. Digital logical "multiplication" "a".

13. 'kp = 17. Digital logical operation "non­

equivalence =".

III. CONTROL TRANSFER OPERATIONS

All control transfer operations do not change the

contents of the cells in the VZU [internal memory unit];

the result of their action affects only certain special

registers.

14. ’kg = 16. Conditional control transfer according

to equality of moduli "=".

-60-

The operation "=" obtains an address program:

a) R {'('k. + ’«‘A) = ' (’k, + ’e-'A)) 3 C3
1 1 2 2 'C + 1 • C

b) 2C - K.

The next three operations are completed analogously.

15. kg = 04. Conditional control transfer in re­*

lation to "less or equal <":
a) R {'('^ + ’ej/A) < '('k2 + 'e2'A)J 3^

b) 2C =» K.

16. ’kg - 05. Conditional control transfer in re­

lation to "less or equal" without taking into account the

signs "|<|":

1k« + € q I
a) R (I'Ck. + ’e'A)| < |'('k2 + 'e2'A)|} t i 3

1 1 “ z z 'C + 1 = C
b) 2C » K.

17. 'kg = 31. Conditional control transfer according

to the sign of the number, "UPCh":

'k7 + 'e^'A • C;
a) R {'('k, + ’e.'A) < - 0} 3 , 3

1 1 'k2 + 'e2'A - C;
b) 2C • K.

18. 'kg = 32.

"UPP":

a) R {1('kj +

Conditional transfer to a subroutine,

’e/A) 5
'k0 + 'eo’A a R; ’ko+’e,'A ° C;

0} 2 2 33
'C + 1 » C;

-61-

b) 2C » K.

Here 'k^ + 'e^'A is the address of the first command of

the subroutine, and ^2 + *62 ’A is the number of the

command to which control must be transferred after execu­

tion of a subroutine. When the condition is not met

transfer is made to the next command in numerical order.

The corresponding subroutine is ended by a special

command.

19. ’kg - 30. Transfer according to the return

register. By this command these actions are completed:

a) 'R - C;
b) 2C • K.

Here the contents of registers kj, k2> kj do not affect

the result of the operation.

IV. OPERATIONS FOR USE OF EXTERNAL UNITS

All operations of this group are group operations;

that is, they refer to code sequences.

20. ’kg = 20. Data input, VCh, from perforated

tape (PL). By this command, codes which beforehand have

been converted from decimal-binary to binary are put into

operative core storage (OZU) cells from perforated tape,

with addresses

-62-

For convenience we shall write this group operation in

the form

a) '(H.) . , , .. - I kl j .
converted to binary I t. I

In addition, the following are executed by this

command:

b) 'C + 1 - C;
c) 2c » K.

21. 'kg = 21. Input of commands, "VK," from per­

forated tape. The same as "VCh," only transfer of codes

is carried out without conversion:

a> •«.) -

b) 'C + 1 » c
c) 2C = K.

22. ’kg = 22. Output of codes onto perforated tape,

"VPL."

Return operation: the contents of cells

are output onto PL

b) 'k3 • C;
c) 2C - K.

-63-

23. 'kg = 23. Exchange of codes between OZU [core
1 storage] and external ZU [storage units] (MB [magnetic

drums]) in the "write" mode, "MBZ". Codes contained in a

sequence of cells of the OZU

in addition,

b) 'k3 » C;
c) 2C « K.

24. 'kg = 24. Exchange of codes between OZU and MB

in the "read" mode "MBCh". Codes from the MB are trans­

ferred to a sequence of cells in the OZU, kp 'k^ + 1,

that is,

*

” ’<»)-[£] ;

in addition,

b) ’k3 ■ C;
c) 2C • K.

25. ’kg = 25. A preparatory operation for the "MBZ"

and "MBCh" operations, ensuring proper feed from/to the
magnetic drum. Here

-64-

{0 for operation 23

1 for operation 24,

’k2"-the track number of the MB, from which code exchange

U is carried out;

'kg--the number of the data item on the MB track from

which it is necessary to start the appropriate

operation.

In this case the actions

'C + 1 =» C; 2C = K

are also executed.

26. 'kg = 33. Stop.

V. ADDRESS MODIFICATION OPERATIONS

Address modification operations are group operations

in the sense that the contents of a modification register

formed by them can be used as a group of commands.

27. 'kg = 26. "Beginning of group operation," NGO.

By the operation NGO:

a) a number is sent to cycle register Ts, charac­

terizing the number of cycles in the cyclical process,

'k^ => Ts ;

b) the readdressing constant is sent to address

modification register A

'k2 » A;

c) the predicated formula is obtained

-65-

k- = u;
R {'Ts = 'A) J

'C + 1 - C;
d) 2C • K.

Thus the command NGO prepares the contents of the

readdressing register, and by the same token provides the

appropriate modification of the changed addresses.

If the number of cycles N is known earlier, and r is

a readdressing step, then we assume:

*kj = ’kj + Nr.

For each cycle repetition in this case the contents

of register A is increased by the quantity r. As long as

'Ts / 'A, computations continue according to the cycle;

when 'Ts « 'A exit is made from the cycle to the command

with the number 'kj.

An increase of the contents of register A by re­

addressing step r can be obtained by taking into account

the readdressing of the corresponding command NGO

(increase of its second address by r), and the repeated

execution of this command, or by means of the next

command, KGO.

28. 'kg = 27. End of group operation, "KGO." By

the command KGO:

a) the contents of register A is increased by re­

addressing step 'k^ + 'A » A ('k| - r—the re-addressing

step);

-66-

b) the predicated formula is obtained

'k, - C;
R {’Ts = 'A] i

'k2 » c;
c) 2C - K.

Here 1 k^ is the command number to which control is

transferred at the end of the cycle; 'k2 is the command

number to which control is transferred during the course

of computations over the cycle. Here we note that *k 2

is not the number NGO, since the latter is not now re­

peated upon transfer from cycle to cycle, since its

repetition would lead to a restoration of the initial

loading of register A.

29. ’kg - 34. Loading of register A according to

a locator (call-up according to locator), "F".

Besides the "NGO" operation, which provides loading

of the address modification register, the "F" operation

is provided, which also executes this function. However,

while the quantity in the command NGO is being sent to

register A in explicit form (as 'k2), in the "F" command

this quantity is assigned only by its address. Under

the "F" command:

a) '(’k^ + 'e^'A)2 « A;

b) '('(’ki + ,e1'A)2) « 'k3;

c) 'C + 1 - C;
d) 2C - K,

-67-

is not used in the execution of the command.

Let us designate by 'a? the contents of the II

address of cell a. Then, if

'k| + a; *a 2 = S,

we have, according to operation F,

a) ₽ « A;

b) 'k3;

c) C + 1 =» C;*
d) 2C = K.

The convenience of using operation F can be made

clear from Chapter V. It is possible to show that the

presence of operation F makes it possible to compose

programs for arbitrary cyclical parametric processes,

which do not vary during their operation (without re­

addressing commands).

-69-

BIBLIOGRAPHY OF RAND CORPORATION PUBLICATIONS IN
SOVIET CYBERNETICS AND COMPUTER TECHNOLOGY

1. Ware, W. H., (ed.), Soviet Computer Technology—1959,
RM-2541, March 1, I960. Reprinted in IRE Transac3
tions on Electronic Computers, Vol. EC-9, No. 1,
March 1960.—C--------

An account of a trip taken by two RAND computer
specialists to the Soviet Union as part of an eight­
man delegation representing the U.S. National Joint
Computer Committee and its member societies. The
genesis of the delegation and its itinerary in the
Soviet Union are traced. The state of the art in
Soviet computer technology as observed by the dele­
gates is examined, showing the development, con­
structions, applications, routines, and components
of the major Soviet computing machines. Impressions
are included on Soviet education, the role of the
Academy of Sciences, and Chinese developments in com­
puter technology. Many photographs of Soviet machines,
components, people, and places are included. First­
hand information is also given on the BESM-I, BESM-II,
Strela, Ural, and Kiev computers, plus several other
machines. Machine specifications are presented in
chart form, facilitating comparisons; op codes are
given for the Ural-1 and Ural-2. 205 pp. Illus.

2. Feigenbaum, E. A., Soviet Cybernetics and Computer
Sciences, 1960, RM-2799-PR, October 1961. Reprinted
in IRE Transactions on Electronic Computers, Vol.
EC-10, No. 4, December 1961.

A description of the author’s experiences as a
delegate to the International Congress on Automatic
Control, held in Moscow. June 27-July 7, 1960. The
Memorandum discusses (1; certain aspects of the con­
ference; (2) some Soviet research projects in artifi­
cial intelligence and biocybernetics; and (3) general
Soviet attitudes, techniques, and directions in the
cybernetic and computer-related sciences. It is con­
cluded that Soviet research in the computer sciences
lags behind Western developments, but that the gap
is neither large nor based on a lack of understanding
of fundamental principles. The Soviets will progress
rapidly if and when priority, in terms of accessibility
to computing machines, is given to their research.
77 pp. Illus.

-70-

3. Ware, Willis H., and Wade B. Holland, (eds.), Soviet
 Technology: I. Soviet Cybernetics,

1359-1962, RM-3675-PR, June 1963.
Cyperneti.es

Seven sets of translations in the area of Soviet
cybernetics, together with commentary and analyses
on the status of cybernetics in the Soviet Union, and
the directions of Soviet cybernetics research. This
volume is concerned with general computer technology
and cybernetics applications, rather than with
specific machines. Particular emphasis was placed
in selection of items for translation which surveyed
the activities of organizations and conferences, and
current literature. 104 pp. Illus.

4. Ware, Willis H., and Wade B. Holland, (eds.), Soviet
Cybernetics Technology: II. General Characteristics
of Several Soviet Computers, RM-3797-PR, August 1963.

Several sets of translations detailing specifi­
cations for the Ural-2, Ural-4, BESM-II, Razdan-2,
MN-10 and MN-14, Luch, and EPOS computers. The level
of detail varies widely among the several articles,
which were taken from such diverse sources as speci­
fication brochures, items in the popular press,
technical journals, etc. Included is a set of in­
structions for the BESM-II which is quite dissimilar
to that presented in Elements of Programming. 67 pp.
Illus.

		* M II 		

	PREFACE

	SUMMARY

	RAND EDITORS' INTRODUCTION

	ELEMENTS OF PROGRAMMING

	APPENDIX

	BESM

	fifi 11 iYii'i ii iiiiiiiiiirnmiiimnmfi

			r	'

	I'liiii'iniiiiiiiiiB'iiiiiiiiiririiiiiiiiin

	STRELA

	I.	ARITHMETIC OPERATIONS

	b> S(2k3<-<» j:».

	II.	LOGICAL OPERATIONS

	V.	STANDARD ROUTINES

	URAL

	. 	r — . .	1 ~

	ljl,lllllllllllllllllll’llllllllllllllllll

	V	 i	'

	iiiiiiiiiiiiiiiiiiiTiiiiiiiiiiiiiiliQ

	/ii’i 11 iTi.’i 111 i i i itTj

	I.	ARITHMETIC OPERATIONS

	II. LOGICAL OPERATIONS

	KIEV

	frinilWIIIIIIIIIIIHIIIIIIIIIIIIIIIIII

	I■ ARITHMETIC OPERATIONS

	II	. LOGICAL OPERATIONS

