
































to convert from the binary system into the blinary-coded decimal system.

A special "load instructions" instruction 1s used to load instruc-
tions; 1t eliminates conversion of codes; conversion from the octal
system in which instructions are written to the blnary system is car-
ried out while the tape 1s being punched on the keyboarder. Printout
is switched from the decimal number system (four numbers) to the octal
system (four instructions) or vice versa by throwing a special switch
on the readout unit. The machine also has an input and readout punched-
card system.

The main units of the computer are the arithmetic unit (AU), con-
trol unit (UU), high-speed memory (02U), passive memory (PZU), and mag-
netic-clear recording control (UMZ), installed in separate cabilnets,
each having a separate power-supply unit and joined to the remalning
cabinets by as few connections as possible. The magnetic drums are lo-
cated in three separate racks together with the UMZ cabinet; the input
and output devices are located on separate stands, There is also a
central control console.

The energy source 1is three-phase alternating current at 380/220 v;
the power drawn 1s about 25 kw. The computer uses about 2300 small
vacuum tubes of the button series (mainly the 6N1P type) and 10,000 ger-
manium diodes (mainly the D1D).

CODING SYSTEM AND PROGRAM REGISTERS OF THE COMPUTER

For coding of numbers (Fig. 1), the digit positions in a location
of the "Kiev" computer are numbered from right to left from the 1lst
through 4022 digits. The 4;§£ digit position is the sign bilt; the sym-
bol O corresponds to positive numbers, and the symbol 1 to negative
numbrs. The radix point 1s located before the highest-order digit posi-
tion. Thus, the range of numbers represented in the computer 1s from
—1 to +1 with an accuracy of up to 2’“0 ~ 10712,
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machine., We say that a computer A is universal 1if, first, its operation

set 1is algorithmically complete and, second, it has a high-speed stor-

age capacity adequate to contain the universal simulation program that

enables our machine to simulate the operation of any Turing machine as
soon as the program for the latter is written into the high-speed or
external memory of computer A.

For simplicity, we shall assume that our machine has three exter-
nal storage units (VZU-1, VZU-2, VZU-3), which contain, respectively,
the operating program for the simulated Tuiing machine (in the form of
a set of quintuplets of symbols similar to thcse discussed above), the
state of this machine at the given time, and the contents of its tape.

Let us now discribe the unlversal simulating program in general
terms. The basic difficulty lies 1in the fact that both the number of
states of the simulated Turing machine and the number of different sym-
bols on its tape may be so large that they cannot be represented by
words of the length used for the numbers with which the simulating com-
puter A works. In this case, each state qy of the Turing machlne will
be represented by a series of numbers., It 1s deslirable to store these
numbers in successive even locations of the VZU, whille the odd locations
are used for auxiliary indices indicating the baslc numbers by some
method or another. Morover, it 1s necessary to use different numbers to
represent the states (qi), symbols (mJ), and nature of tape motion (dk);
special numbers must also be used to represent the beginning and end
of the sequences of numbers representing qy and mJ.

Then the universal simulation program will contaln the following
basic segments. The first segment, controlling the sequentlal selectlon
(with interval 2) of numbers from VZU-1l will compare the numbers and in
case of a disagreement will jump to the beginning of VZU-2 and to the
beginning of the next sequence for qy in VZU-1. The second program seg-
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ment begins to run after complete agreement has been established between
the sequence g contained 1in VZU-2 and one of the sequences a4 in VZU-1.
It selects and compares sequences of numbers from VZU-3 (the scanned
symbol m) and VZU-1 (the symbol m, of the Turing-machine program follow-
ing the selected state qi).

When the sequences are not the same, control agaln Jumps to the
first segment, while where they are the same, the next segments begin
to run; they write into the VZU-3 the new symbol mJi from the selected
quaduplet of symbols from the program in VZU-1, write the new state
qy (from the same quadruplet) into VZU-2, and readdress the instructlons
pertaining to VZU-3 for the beginning of the following or preceding se-
quence.,

It is easy to see that all of these segments may be realized in the
following instructions of the "Kiev" computer: MBP, MBZ, MBCh, addition
of instructions, and exact comparison (while where punched tape is used
for one of the VZU, the instructions "load instructions" and "readout"
as well). The entire universal simulation program will consist of doz-
ens of instructions and, in any case, can be stored in the 0ZU of the
"Kiev" computer.

Thus, according to the definition adopted above, the "Kiev'" may be
consldered to be a universal computer. The algorithmic completeness of
its operation system 1s ensured by the operations with peripheral equlp-
ment (including external storage), addition of instructions, and exact
comparison. Where part of the program for the simulated Turing machine
1s stored in 02U, we must add to these operations the operation of num-
ber transfer from one location to any other location (in the "Kiev"
computer, such an operation may be accomplished elther with the aid of
the F operation, or by addition with zero). Where the universal simula-
tion program 1s stored in the PZ2U, we must add to the operations ensur-
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Chapter 3
ADDRESS PROGRAMMING AND THE "KIEV" ETLECTRONIC COMPUTER
THE ADDRESS LANGUAGE

In the rest of the discussion in this book, we shall use an algor-
ithm language introduced for formal description of algorithms, and
called the address language.

The address language is a universal algorithm language very simi-
lar, on the one hand, to the generally adopted language of formulas and,
on the other hand, to machine languages on the whole; as a result, al-
gorithms in this language may be considered to be programs for general-
purpose machines. The similarity of the address language and machine-
code languages 1s explalned by the fact that it reflects the fundamental
algorithmic principles realized in present-day universal computers: the
principle of program control and the addressing principle.

The translation of algorithms from the general formal language to
the language of a concrete machine may be automated (using the same
computer) by creatiné appropriate translator programs PP.

The idea of creating such a language appeared as a result of the
work of the seminar in the theory of algorithms (1957-1958), which
worked under the guidance of V.M. Glushkov, L.A. Kaluzhnin, V.S. Korol-
yuk, and Ye.L. Yushchenko.

The work on creation of the language itself was first carried out
Jointly by V.S. Korolyuk and Ye.L. Yushchnko [10]. Later Ye.L. Yushchen-
ko [15] made substantial improvements in the language, some of which
were discussed in the joint publication by B.V. Gnedenko, V.S. Korolyuk,
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ated by the ";" symbol (semicolon), or the "," symbol (comma). The first
of these 1irndicates that it 1s not permissible to interchange the formu-
las 1n a line, while the second indicates that this is permissible.
Lines are separated from one another by the fact that they are written
one above the other (in coding for the computer, a "." (period) may be
used as a separating symbol.

The prime operatlon and address mapping. The prime operation de-

fines some function of a single variable. Its symbol (a prime) 1s writ-
ten above and to the left of the argument

‘a=p,
where a 1s the argument and b the result of the operation.

We read this as follows: prime a equals b (or b 1s the content
of a). The ' (prime) function defines a certain mapping of the set of
addresses A onto the set of contents B, which we shall call the address
mapping.

The mapping of set A onto set B must be single-valued (to one ad-
dress there must correspond Jjust one content). The inverse mapping may
be one-many. No more precilse meaning should be read into the prime oper-
ation.

In abstract discussions, no restrictions are imposed on the sets
A and B, 1.e., the prime function may be defined on an arbitrary set of
arguments A, and will have values in an arbitrary finite set B. For
purposes of applications, however, both sets are restricted, and are
sets consisting of certaln codes.

To represent the members of the address set, we use the letters of
some initial (finite) alphabet with or without indices, the positive in-
tegers, as well as words formed from the letters of the 1initlal alpha-
bet and digits. As such an initial alphabet, we might take a combinatlon
of the upper- and lower-case Latin, Russian, and Greek alphabets. Then
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into a particular style of the language 1is possible at any level. The
task of a PP 1s to translate from the general address language. Thils
translation may be divided into stages, however, by the introduction of
a a series of styles approachling ever closer to the machine language.
Thus the work of the PP 1s reduced fundamentally, to formal‘transforma-
tions within the address language, to translation from style to style.

Depending on how complex a PP we are able to reallze, the breadth
and flexibility of the address language permits us to select a point
before which the problem program must be written manually so that the
rest of 1its processing may be carried out by the PP. Owing to this, to-
day it 1s possible in practice to automate the programming of certain
program segments. Thus the introduction of a PP with the address ad-
dress language as source for the "Kiev" computer — the PP-AK (see be-
low), as well as PP using the same source language for other computers
(the "Ural" and the UMShN, the broad-function control computer, and
others) has made 1t possible to increase programmer productivity by
many times. Owing to the generality of the source languages, the exis-
tence of these PP makes it possible, where needed, to transfer problem
solution from one computer to another with no speclal difficulties,
as well as to expand the group of people able to write programs (in the
address language) for computers fo include those concerned with direct
algorithmization of various information-handling processes and even to
those in total ignorance of machlne codes. This last factor must be con-
sidered especially important in view of the increasing needs for per-
sonnel caused by the lncrease in the number of computers in use and
thelr operating speed.

Thus work ordinarily performed by a skilled programmer can be di-
vided into too essentially different segments. Work on the refinement
and writing of algorithms, which requires a high degree of mathematical
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guage.

On the other hand, any elementary IAVM operation may be reproduced
by some sequence of operations — a routine for any actual general-pur-
pose computer, Naturally, 1in golng from the address program to the pro-
gram for an actual computer 1t 1s necessary to allow for machine-mem-
ory capacity (and its linearity), as well as for the presence of vari-
ous program reglsters.

The analysls of address programs shows that address programming
reduces to construction of various schemes for scanning the i1nformation
(10]). By using the concepts of addresses of higher rank and schemes for
scanning the information on the basls of such addresses, we can consid-
erably simplify the problem of programming and are able to write algor-
ithms (their address programs) in a form that does not vary during the
process of executlon and that does not depend on the parameters of the
particular problems (in contrast to programs written with instruction
readdressing) .

An arbitrary address algorithm may be represented in an equlvalent
form (equivalent -n the sense of results obtained) such that all of the

address functions entering into the algorithm representation appear in

rank not exceeding two [16]. But algorithms describable with the aid
of only first-rank address functions and not including substitution

(pcaddressing) formulas represent a very narrow class of algorithms

[11]. Thus in order to obtain algorithmic completeness, we must in-

clude in the set calling by second address or a substilitution opera-

tion.

We should note that the first of these operations possesc certaln
conveniences that the second does not offer in connection with the fact
that 1t 1s better 1in practlice to use programs that do not change while
they are being run. Moreover, such programs are easily built in as
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2) addresses of rank zero can only be components of operations in-
volving addition with the content of the A-register or with zero, where
the result is stored according to the A-register.

Table 1 shows the fundamental relationships between address func-
tions and programs in "Kiev" computer language; here a, b, and c repre-
sent nonnegative octal integers < 3777 (addresses of rank zero), while
o)

6~ and 63 represent numbers equal to zero or unity; three dots in

1’ 72
the instruction column indicates that any number of instructions can
be inserted at this location, provided they do not change the content
of the A-register; a dash 1n an instruction address indicates that the
content of this address 1s not used for the glven operation; 6 1s the
symbol for an arbitrary (arithmetic or logical) elementary operation;

A represents the modification register (A-register).

ALGORITHM FOR FORMAL TRANSLATION OF ADDRESS FUNCTIONS INTO "KIEV" MA-
CHINE CODES

The speclal feature of algorithmic languages lles 1n the fact
that in contrast to natural languages each of the syntactical sligns
(or set of signs) carries its own informatlon as to meaning, which does
not depend on relationships wlth other signs. As 1t applles to the ad-
dress language, thls f(eature permits us to give a programmlng method
in the form of a new principle of translator-program operation.

The general operating principle of previously known translator
programs (see, for example [7]), including the above-mentioned PP-2
and PP-AK for the "Kiev" computer, consists in searching through thc

algorithm as written for a representable set of gymbols to be urced as

the basis for formation of one or several computer 1lnstructlilons. Where
parentheses are used 1n representation of formulas, such a representa-

ble set will be, for example, a performable operatlon — the symbol tor

a two-term operation connecting two adjacent symbols for variables, or
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the symbol for a one-term operation immediately followed by a varilable.
On the basis of the representable comblnation of codes that has been
found, the translator program writes into the working-location block
that has been set aslde the appropriate instruction or group of instruc-
tions (depending on the computer address format, etc.), selecting a
working location for the result where necessary; in the 1initial informa-
tion representation, the computer replaces this combinatlion of symbols
by the number of the working location. In one way or another, conden-
sation of the initlal information continues, since the numpber of ele-
ments in the initial information will be reduced under such treatment,
and the process 1s repeated until the entire representation is exhaus-
ted. The implementation of various improvements (for example, reduction
in the number of working locations) causes no.difficulties-in pr}gciplé.

- y r
The following principle may be proposed for element-by-efﬁmeé%ﬁ_
. = s

™

translation of address formulas into machine language:

1) to write a program corresponding to a single aad;es‘s formula, a
working field of sufficient volume 1s set aside;

2) the init.al information is scanned element-by-element in natur-
al order, Jjust once, and depending on the information element scannea
at the given instant, the computer writes into the worklng fileld.

The principle of one-shot element-by-element scanning of the infor-
mation was proposed by Ye.L. Yushchenko [22] in order to realize an
algorithm for formal checking of the correctness of unparenthesized and
parenthesized representations of formulas. Later, M.M. Bushko-Zhuk pro-
posed to use this principle for translator-program operation.

Let us consider an algorithm of this type for translating address
functions into the language of the "Kiev" computer. For symplicity, we
shall assume that the address-function representation may include:
an address of arbitrary rank, except for addresses of rank zero; arbl-
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< strictly parenthesized representation of a function > :: = aIO1 <
< component > | < component > 0, < component >.

The formula glves a recursive rule for forming address functions 1in a
strictly parenthesized representation.

The working block set aside for writing of the program is filled
from the bottom upward. The instruction components are established as
the computer scans the coded information (in the course cf operaticn,
certain instructions may be completely formed, while others, possibly
including some to be executed earlier, will still not be formed or will
be formed only in part). The machine reduces the nuuber of working loca-
tions needed as it runs.

We introduce the following definitions:

?g 1s the specifier for an initial information element;

@ 1s the specifier for elements of the input iInformation; flrst
19 = C"1(a);

C i1s the succession operation in the sequence of addresses for the
elements of the initial information, the first of which 1s represented
by a (several elements may be placed into one machine address);

¥ 1s the specifier for the working block set aside for recording
of the working-program instructions; the address of the last location
in this block 1s s;

k 1s the specifier for the block of working locations for the work-
ing program (RP);

r 1s the first working location of this block;

Z, B, and X\ are working specifiers.

The specifier 3 1s used when parentheses are manipulated. With the
aid of this specifier, upon processessing of the initial-parenthesis
symbols, 1n some block of translator-program (PP) working locatlons

that contains k addresses (Y + 1, Y+ 2, ..., Y + k) there are formed
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PRV, whose function consists 1n transferring control to the instruction
whose address 1s contained in the 1link register. The content of the 1link
reglster 1s prepared appropriately in the call to the subroutine. With
the "Kiev" computer, in virtue of the presence of Just a single 1link
register, thils method of golng to subroutines 1s possible only for pro-
grams that do not themselves contain calls to subroutlines. In other
cases, linkage between subroutines and routines 1is reallzed with the
ald of a previously prepared unconditional-jump indicator. Depending on
the level of the transfer to the subroutlnes, fixed addresses can be
used.,

SUBROUTINES IN FIXED BUILT-IN STORAGE (PSP)

For all routines for one-term elementary functions, the entrance
address, 1.e., the location that must contain the argument x prior to
the call to the subroutine will be 0002; the exit address, 1.e., the
location into which the subroutine will write the value of the deslred
function will be 0003. The routine for 1ln x 1s an exception; this is
not a one-term function; to evaluate 1n x, the argument x 1s first
transferred into location 0002 while the result appears in two loca-
tions: 0003 contains the value of the function and OOO4 the scale fac-
tor.

All PSP routines terminate with an indicator for a jump on the
basls of the link reglster (PRV), and this must be taken into account
in programming.

Frequently employed constants are placed into the PSP. Table 2

shows a 1list of them. Table ; gives a list of PSP subroutines.
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best approximation

Lsinx = gsing y={(((Coy* + C,) 4* + Co) 4* + C)g* + Cy) .

1s used where

== 0,000 079 742 095; C, = — 0,000 233 688 278;
= 0,03984 483964, C,= —0, 32298 185 553;
= (0,785 398 159 235.

g.

C

Using this same polynomial, the machine evaluates % cos x with pre-
liminary reduction of the argument 1n accordance with the formula

X=3—|xlor j=1—|y|

Program 2 and 3

1 2
[auqucneuue = —;— sinx u y= —% cosx (—l<x< 1)

3172 i a0ty 7553 6722 3175 25 1256 7405 5204
D Php 146 1443 6 14 4417 6651 0101
' tad 2127 5453 7 20 0000 0000 0001
cos...3147 1i wu02 3067 0002 3155 01 3172 0000 0003
3150 06 3035 0002 0002 6 11 0003 0004 0003
1 05 0000 0000 3153 7 01 0003 7173 0003
sin... 2 11 0002 3067 0002 3160 27 4001 3156 3161
3 1 0002 0002 0004 1 11 0003 0002 0003
4 .., w04 0000 0000 2 32 0000 0000 0000

1) Evaluation; 2) and.

Argument '0002 = x; result '0003 = 3 sin x (% cos x accordingly);
initial instructions 3152 for + sin x and 3147 for % cos x.

Program 4

1

[Buqucnemle —;- siny (—2r<x < 2::)]

sin ...3264 04 0000 0002 3266 3272 02 0000 0002 0002

5 01 3035 0002 0002 3 04 0002 3043 3275
6 04 0002 3042 3273 4 02 3042 0002 0002
7 02 3035 0002 0002 5 12 0002 3241 0002
3270 04 0002 3043 3272 6 04 0000 0000 3153
1 02 3042 0002 0002 7 22 0003 0003 3146

1) Evaluation.

Argument '0002 = x/2m; result '0003 = % sin x; initial instruction

3264,
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1.e., 0 < ¢ < m/2; this means that z < 1, which 1s clear from the re-
lationship ¢ = 1T/2zO and a5 = 1.
If x < 0, then cos ¢ < O and ¢ 1s an angle in quadrant II, 1i.e.,

T/2 y x ¥ ™ and zy > 1. This means that a, = 1.
We also compute x1+l in order to determine the quadrant in which
angle ¢ lies. If Xy > 0, then ai = 0 and X441 = 2x§ - 1. If Xy <0,
2
then ai = 1 and xi+l =1 — 2x1.
We compute (1/m) arc sin x from the formula
arcsin x = 32‘- — arecos x.
Programs 9 and 10
1 e 1
1 [Bbiuncaenue —arccosx i — arcsin x(—1 < x <))
arcsin ... 3242 02 0000 0000 0004 3253 14 0003 0006 0003
3 05 0000 0000 3245 4 02 3042 0005 0002
©arccos ... 4 01 0000 0000 0004 5 12 0002 3263 0002
5 01 0000 0000 0093 6 10 3042 0006 0006

6 01 3042 0000 0006 7 05 3012 0006 3247
7 11 00602 0002 0005 3260 31 0004 3262 3261
3250 31 0002 3251 3253 1 02 3042 0003 0003
1 02 0005 3042 0002 2 32 0000 0000 0000
2 05 0000 0000 3255 3 10 0000 0000 0001

1) Evaluation of; 2) and.

Argument '0002 = x; result '0003 = (1/m) arc cos x [(1/m) arc sin x),
accordingly); the initial instruction for (1/m) arc sin x is 3242 while
for (1/m) arc cos x it is 3244,

SUBROUTINES IN INTERCHANGEABLE BUILT-IN STORAGE (SSP)

The interchangeable built-in memory 1is realized in the form of
blocks, each of which bears a number from 1 to 5 and contalns 100 oc-
tal (64 decimal) codes. ‘

Block programs are so grouped that those subroutine complexes that
most probably will be required simultaneously in problem solution can
be inserted as needed. Thus, for example, programs of llnear algebra

are located in blocks with different numbers so that they may be inser-
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ten:

a) the code to be written is set up manually in NK 3007, and ex-
actly the same word 1s written into all drum locatlions;

b) the code to be written is formed on the basis of 4 pseudoword

program, and a new word 1s transferred into each 0ZU location for writ-

ing.

Manu-

gggtpt [Footnotes]

No.

140 The MP algorithms were developed by I.V. Serglyenko and L.N.
Ivanenko under the guidance of Ye.L. Yushchenko.
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area, reduces the number of working locations used, makes 1t possible
to write the program onto drum, as well as to monitor loadlng and mag-
netic writing.

We also note that with the aid of the PP-AK and PP-2 it 1s possible
to obtain programs intended to perform floating-point calculations.

One of the following methods may be used for thls purpose.

The executlon of floating-point calculations may be provided for
directly in the writing of an address program which is used in conjunc-
tion with the PP to write floating-point programs.

The insertion of the floating-point mode directly into address
programs, however, frequently envolves great amounts of effort and in
thls connection it 1s possible to use the method given in Chapter IV
for simulation of the floating-point mode. Since the use of thls method
imposes certain restrictions on the set of admissible elementary opera-
tions, and also leads to slowing down of the calculations by roughly
a factor of 10, it may be employed for isolated program segments; the
other segments; the other segments may be é&ecuted in fixed-polnt mode
or with floating scale factors.

The utilization of parentheses in formula representations 1is a
special problem. As the Polish mathematiclan Jan Lukasiewlcz has shown,
the order of execution of operations may be specified uniquely wilthout
the use of parentheses; when we do this, the operation symbol must come
first, with the arguments following. As an example, the eXxpression

@+b)Xcmf
in the Lukasiewicz representation will have the form
= X 4 abef,
while the expression

In(a + b)

a—s X¢=|
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will have the form
= X :In 4 ab — ab¢f.

The Lukasliewicz representatién is no less convenient than the gen.-
erally-accepted representation of formulas with initilal and terminal
parentheses, brackets, braces, etc. It 1s especlally convenlent 1In the
representation of conversion operators for automatic programming. Herec
we speak not only of eliminating one class of 1nitial information —
the parentheses — which enables us to simplify coding. Parentheslsles:s
representation of formulas possesses one extremely interesting proper -
ty: the sign on the rirst operation symbol on the right belongs to the
operation belng executed. Thus, the parentheslsless representation of
formulas permits a substantial simplificationin the cholce of informa-
tion for instruction synthesls.

It 1s simple to go from the generally-accepted notation to the
parenthesisless form; moreover, this may easlly be done by the computer
itself, as 1n the automation systems given here. The Lukasiewlcz repre-
sentation 1s used directly by the PP-AA and PP-2 translator programs
in a somewhat modified form — it 1s used from right to left. Our exam-

ples would be rewrlitten as follows:

fcba 4 X ==
fcba —ba +1In: X =

This type of representation makes 1t easy to select intrormation
for instruction syntheslis. Thus 1n the first example, the first opera-
tion to be performed 1s the addition a + b or ba +. To establlsh thi~,
the algorithm scans three elements at a time from left to right for a
two-term operatlon and two elements at a time for a one-term operation.
In the second example, the filrst operation executed wlll be a — b or
ba —, but to find 1it, the algorlthm must scan and analyze one Informa-

tion element (EI) at a time, and find the operation symbol. In virtuc
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of the representation rules, the two EI on the left (one for a one-term
operation) will be arguments.

In programming formulas given in parenthesis representation, we
first apply the algorithm for translating the parenthesis representa-
tion into the parenthesisless form (see [21]) with a simultaneous (for-
mal) check on these representations [22].

TRANSLATOR PROGRAM FOR "KIEV" COMPUTER USING ADDRESS ALGORITHM AS INPUT
INFORMATION (PP-AK)*

The advantage of the PP-AK as compared with the translator programs
known to us consists primarily in the generality of the algorithmilc
source language. Thlis feature of the source language makes the PP-AK
extremely promlising as the number of different types of computer 1n-
creases.

The tendency to create PP that run quickly and are convenlient for
practical utilization has led to the need for imposition of certain
restrictions. In particular, in PP for the "Kiev" computer there so
far 1s no automated call to external memory.

Despite the fact that PP-AK (without the block for conversion of
formulas into parenthesisless form) consists of a total of only 576 in-
structions (in the decimal system) it uses the universal address lan-
guage as a source language with very slight restrictions on the style
of the language, includes a formula-reduction block, a working-cell re-
duction block, and a block for evaluation of predicate functions.

The workling program complled by the PP-AK may be punched out onto
cards or paper tape.

The average rurning speed ofbthe PP-AK is 100 instructions per min-
ute (allowing for loading and readout). Input information 1is supplied
by zones. There 1s provision for automatic monitoring of working-program

allocatlon over the worklng field.
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Gauss transformation produces the system
A’'AX = A'F.

Application of the method of conjugate gradients to this system yields

X = x. + ‘g atsl;,

a‘ — ('(-»l' 'i—l’ .

-sshzx“, ’
=i

ry=r_,—aAAs;
Sivt =i+ b.s,;
bi= —L 2 (;"f‘) .
(Pimys Pimy)

Here ?i is the discrepancy for the transformed system. It is clear that

r, = A'ri, where ry is ¢ve discrepancy for the initial system. Taking
this into account and transiorming the scalar product, we arrive at
the calculation formulas:

.. n
X=X,+ '}.‘,' as;;

a. = Ao Aniy),
! (Asi, As)) *
5, == A'ry; '

r,=r,_,—a,As,;
sc'—l = A"c + bcsi;
b= (AT AT
(A'rimy, Alrgy)’

Address Frogram

A vector Sy is given in the form of an A-sequence, a vector Asl
as a B-sequence, a vector r, as a C-sequence. The solution of system
X will be obtained in the form of a D-sequence.

In connection with the fact that the initial matrix may contain

many zeros, the information is specified in the form of a block of num-

bers and scales

H {

a i,
1A I1A IIIA
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tions. The calculations themselves are performed by the transformation
operator.

Thus, predicate formulas are written in the form of finished in-
structions for the "Kiev' computer, but in symbolic addresses (x, y).
The work of the logical block of the PP-2 consists in assigning abso-
lute addresses.

As for the representation of modificatlion operators for the PP-2,
here also we were able to avold special constructions owing to the di-
rect use in the language, on the one hand, of "Kiev' computer opera-
tions and, on the other, of nonstandard operators.

The fundamental role of the technical operators is to control the
exchange of codes with external memory units. Some of the operations
may be written beforehand, since the volume of numerical material and
its storage allocation are known. As for subroutines,'the instructions
used to write them onto drum are formed by the PP-2 itself at the end
of programming. Those technical operators that may be written out prior
to programming are represented in "Kiev" machine instructions, and are
loaded as nonstandard operators.

Storage Allocation and Coding

In view of the limited capacity of computer high-speed storage,
it becomes necessary to break programs down into subroutines and to
load them sequentially from drum. The PP-2 makes provision for realizing
this process. All of the initial material for programming is divided in-
to segments from which the subroutines are later compiled. At the be-
ginning of each segment there is the NP sign (beginning of subroutine),
and at the end, KP (end of subroutine). The last subroutine carries a
central-control function (TsU) and has special beginning (NTs) and end
(KTs) signs. The subroutines are not joined directly together. Each has
its own set of standard locations for storage of initial data and re-
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division into zones is performed mechanically, and has nothing whatso-
ever to do with the division into subroutines.

Stages and Cycles of PP-2 Operation. The working programs compiled

by the PP-2 consist of subroutines and TsU. All subroutines are program-
med in the same way. For the TsU, the difference lies in the address

of the first instruction. Thus an outer loop consists in the program-
ming of subroutines. Here three stages must be diztinguished: the first
stage, programming of arithmetic formulas and rewriting of the elements
of the remaining operator; the second stage, assignment of absolute
addresses; and the third stage, taking of the check sum and writing
onto drum.

We have already mentioned the simplicity of the search for the
first operation to be executed when the formulas are represented from
left to right in the Lukasiewicz form. As soon as an operation is found,
an instruction is formed. A special investigation 1is carried out before
address III is filled. If there 1s an output address in the initial in-
formation following an operation, it is written into address III of the
instruction. The appearance of an output address indicates the end of
formula programming. In the opposite case, a working-location address
appears in address III. The number of working locations 1is reduced
while the block 1s in use. The block is scanned in the direction of
decreasing addresses, and the address of the first location containing
+0 1c inserted in the instruction, while —0 is written into this same
address. If the numbers of the worklng locations appear in addresses I
or II of the instruction, the corresponding address is "freed" i.e.,

a +0 1s written into this address. The number of the greatest working
location (having the smallest address) is noted and compared with the
number of the next lnstruction. An overlapping of blocks causes an emer-
gency halt of the PP-2.
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