
A
D

63
71

19

This translation was made to provide the users with the basic essentials of
the original document in the shortest possible time. It has not been edited
to refine or improve the grammatical accuracy, syntax or technical terminology.

FTD-TT- 65-972/14-2

UNEDITED ROUGH DRAFT TRANSLATION

THE KIEV COMPUTER; A MATHEMATICAL DESCRIPTION

BY: V. M. Glushkov and Ye. L. Yushchenko

English Pages: 227

TM5OO1617

THIS TRANSLATION IS A RENDITION OF THE ORIGI-
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE
ANO D0 NOT NECESSARILY REFLECT THE POSTION
OR OPINION OF THE FOREIGN TECHNOLOGY DI
VISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP.AFB. ONIO.

AFL.C—WPAFB—JUN 66 72

FTD-TT* 65-972/1+2 Date 28 March 19 66

V. M. Glushkov and Ye. L. Yushchenko

VYCHISLITEL’NAYA MASHINA ’’KIEV"
MATEMATICHESKOYE OPISANIYE

Gosudarstvennoye Izdatel’stvo Tekhnickeskoy Literatury

USSR
Kiev - 1962

Pages: 1 - 183

FTD-TT-65-972/1+2

6P2.15
G55

—* o r
This book deals with a description of the general-purpose "Kiev"

computer developed at the VTs AN UkSSR.
The book discusses the basis for selection of the mathematical par­

ameters of the computer, a description of the set of operations, stand­
ard routines, and test routines, and also discusses problems pertaining
to automatic programming, including the special algorithm language de­
veloped at the VTs AN UkSSR.

The book is designed for engineers, scientific workers, students,,
and graduate students, working in the field of computer mathematics and
computer engineering, as well as for specialists wishing to use elec­
tronic computers in their work.

Reviewer,
Dr. of Physical-Mathematical Sciences Prof. L.A. Kaluzhnin
Editorial Board
for Literature on Problems of Power, Radio, and Television
Chief of Editorial Board,
Engineer M.Q. Pisarenko

TABLE OF CONTENTS
Preface... 1
Chapter 1. Fundamental Characteristics of ’’Kiev” Computer. . 3

General Data... 3
Coding System and Program Registers of the Computer. . . 5
Operations Performed by the Computer 9
Representation of Codes in the Computer.................. 20

Chapter 2. Problem of Validating the Choice of Fundamental
Characteristics..................................... 23
Universal Economic Criterion for Efficiency of Automatic

Digital Computer..................................... 23
Address Format and Word Length......................... 29
Storage Capacity 35
Set of Operations....................................... 38

Chapter 3. Address Programming and the "Kiev” Electronic
Computer... 45
The Address Language................................... 45
Address-Language Levels and Styles 61
Example of Address-Program Writing 64
Address Algorithms and Mathematical Machines 68
Address Description of "Kiev” Machine.................. 72
Group Operations of the "Kiev" Computer................ 81
Representation of Address Functions in the ’’Kiev” Com­

puter 89
Algorithm for Formal Translation of Address Functions

into ’’Kiev” Machine Codes....................... 94
Chapter 4. Subroutines for "Kiev” Computer 105

General Principle of Standard-Block Construction and
Subroutine Method 105

Subroutines in Fixed Built-in Storage (PSP)................ Ill
Subroutines in Interchangeable Built-in Storage (SSP). . 117
Standard Routines..122
Program Realization of Floating-Point Mode on "Kiev"

Computer. ...140
Test Routines for the "Kiev" Computer..................... 149

Chapter 5. Translator Programs for the "Kiev" Computer . . . 160
Formulation of Problem.................................. 160
Translator Program for "Kiev" Computer Using Address

Algorithm as Input Information (PP-AK)................ 163
PP-AK Source Language.............. 164
Examples of Programs Compiled by the PP-AK............... 178
The PP-2 Translator Program.186

FTD-TT-65-972/1+2

Example of Program Compiled by PP-2....................... 201
Appendices..204

Appendix 1. Control Console (PU) 204
Appendix 2. Tests... 213
Appendix 3. Instruction System for "Kiev" Computer . . . 224

References..224

- 11
FTD-TT -65-972/1+2

PREFACE
Studies toward the creation of the "Kiev" general-purpose electron­

ic computer were begun in the Laboratory of Computational Techniques of
the Mathematics Institute of the AN UkSSR at the initiative of Academi­
cian B.V. Gnedenko by a group which had, under the leadership of Acade­
mician S.A. Lebedev, developed the first electronic computer in Europe,
the Mesm. Together with senior scientific associates L.N. Dashevskiy
and Ye.L. Yushchenko, B.V. Gnedenko supervised the initial stage of com­
puter development. The final stages of development of the "Kiev” compu­
ter were supervised by Academician of the AN UkSSR V.M. Glushkov, L.N.
Dashevskiy and Ye.L. Yushchenko. Final work on the "Kiev” computer (en­
gineering design, assembly, and debugging) was carried out at the Compu­
ter Center of the AN UkSSR, created in December of 1957 [4, 6].

Many scientific workers and engineers of the Computer Center of the
AN UkSSR participated in development, adjustment, and debugging of the
computer. Important independent work was performed by S.B. Pogrebinskiy,
Ye.A. Shkabara, as well as by L.M. Abalyshnikova, A.I. Kondalev, V.V.
Kraynitskiy, V.D. Losev, A.A. Barabanov, L.P. Bystrova, V.I. Dvortsyn,
Z.S. Zorina, A.Ya. Zubatenko, L.N. Ivanenko, A.A. Letichevskly, V.S.
Motorna, and others. V.S. Korolyuk and I.B. Pogrebyskiy, senior scien­
tific associates of the Mathematics Institute, participated during the
initial period in studies on the selection of computer mathematical par­
ameters .

Development of the "Kiev" computer raised the problem of creating
a fairly powerful computer which could fit in with the fundamental

1

equipment of the Computer Center of the AN UkSSR. This development work
was the response of the group to the resolution of the XX Party Congress
of the CPSU on the need for broad-scale development of electronic compu­
ter technology.

The solution of this problem first required determination of a
reasonable compromise among speed, memory size, and programming conven­
iences on the one hand, and computer reliability on the other.

The design of the computer was based on the asynchronous principle,
which is particularly convenient both from the viewpoint of greater sim­
plicity in over-all machine debugging, as well as from the viewpoint of
the possibility of successive (unit-by-unit) modernization of the com­
puter. In addition, this principle offerred great possibilities for
using not only Individual elements, but also entire units of the compu­
ter in the creation of specialized computer and control installations.

It should be noted that machine design was subject to moderniza­
tion and the modernization process continued not only during over-all
machine debugging, but even after it was placed into operation. Thus
the description of the computer given in this book corresponds to its
state as of 1 January 1960. Some of the modifications made or planned
are described in this monograph.

This book describes the mathematical principles realized in the
"Kiev" computer, the instruction system, the standard and test routines,
as well as a system of automatic programming based on the algorithm
language developed at the Computer Center of the AN UkSSR, and used as
the input language for translator programs on other machines as well.

The first and second chapters of this book were written by V.M.
Glushkov; Ye.L. Yushchenko wrote the remaining chapters.

Comments and suggestions pertaining to this book should be addres­
sed to Kiev, 4, Pushkinskaya, 28, Gostekhizdat UkSSR.

- 2 -

Chapter 1
FUNDAMENTAL CHARACTERISTICS OF "KIEV” COMPUTER

GENERAL DATA
The "Kiev" electronic digital computer is a general-purpose auto­

matic computer, designed for scientific and engineering calculations.
This is a three-address machine, and works at fairly high speed — up to
15 thousand additions, 5 thousand multiplications, or 3 thousand divi­
sions per second. If we assume that 80% of all operations are of the
addition type, 15% of the multiplication type, and 5% of the division
type, the average operating speed of the computer (working with the
high-speed memory) the actual operating speed is still higher, since
the computer contains provision for certain additional measures that
will increase the speed (for example, skipping of zero addresses).

The "Kiev" computer operates with 4O-digit binary numbers (not
counting the sign bit) with a fixed point preceding the highest-order
digit position. The fact that the operation set contains a special num­
ber normalization operation permits us to realize the floating-point
mode fairly simply by means of programming. In subsequent modernization
of the computer, it is envisioned that provision will be made for cir­
cuit realization of the floating-point mode.

The high-speed storage unit (OZU), with 1024 41-digit binary words
uses ferrites with rectangular hysteresis loops. In addition, their is
a passive storage element (PZU) (also using ferrites) with a 512-word
capacity. We later Intend to increase OZU capacity by another 512 words.

OZU access time is about 10 msec, and the PZU access time requires
- 3 -

only 4 msec. This makes it possible to increase machine speed, since
standard routines and universal constants widely employed in quite di­
verse programs are stored in the PZU. This possibility is actually
realized in the machine, since the "Kiev", being an asynchronous ma­
chine, makes fullest use of the speed of each separate unit.

The external storage (VZU) for the "Kiev" computer uses three mag­
netic drums with a total maximum permissible capacity in excess of
9 thousand words (more exactly, 9864 words). Owing to the use of a ser­
ial-parallel system of writing words onto drum, the access time for a
single word is short (60 msec) with relatively low drum speeds (1500
rpm).

Each drum is in turn divided into channels. The average writing
time (with allowance for the operating time of the channel-switching
relays) in a call to a drum is about 25 msec.

A further expansion in external storage is provided by connection
of an additional-magnetic tape unit.

As a temporary expedient, modified peripheral equipment for the
"Ural" computer and punched-card loading are being used as periphery
equipment for the "Kiev" computer (punched-tape loading, number printer,
output puncher, keyboard and verifier-reader devices).

Numbers are loaded and read out in the decimal number system
(10 decimal digits and the sign), while instructions are loaded and
read out in the octal system (14 octal digits). Loading speed is about
75 words (numbers or instructions) per second, and readout speed is
about 100 words per minute for printing out, and 150 words per minute
for output punching. Numbers are converted directly from decimal into
binary during the loading process by means of the standard "load num­
bers" instruction (no special subroutine is used). When blocks of num­
bers are read out, it is first necessary to use a special subroutine

- 4 -

to convert from the binary system Into the binary-coaed decimal system.
A special "load instructions" instruction is used to load instruc­

tions; it eliminates conversion of codes; conversion from the octal
system in which instructions are written to the binary system is car­
ried out while the tape is being punched on the keyboarder. Printout
is switched from the decimal number system (four numbers) to the octal
system (four Instructions) or vice versa by throwing a special switch
on the readout unit. The machine also has an input and readout punched-
card system.

The main units of the computer are the arithmetic unit (AU), con­
trol unit (UU), high-speed memory (OZU), passive memory (PZU), and mag­
netic-clear recording control (UMZ), Installed in separate cabinets,
each having a separate power-supply unit and Joined to the remaining
cabinets by as few connections as possible. The magnetic drums are lo­
cated in three separate racks together with the UMZ cabinet; the input
and output devices are located on separate stands. There is also a
central control console.

The energy source is three-phase alternating current at 380/220 v;
the power drawn is about 25 kw. The computer uses about 2300 small
vacuum tubes of the button series (mainly the 6N1P type) and 10,000 ger­
manium diodes (mainly the DID).
CODING SYSTEM AND PROGRAM REGISTERS OF THE COMPUTER

For coding of numbers (Fig. 1), the digit positions in a location
of the "Kiev" computer are numbered from right to left from the 1st
through 40th digits. The 41st digit position is the sign bit; the sym­
bol 0 corresponds to positive numbers, and the symbol 1 to negative
numbers. The radix point is located before the highest-order digit posi­
tion. Thus, the range of numbers represented in the computer is from

-40 ,-12—1 to +1 with an accuracy of up to 2  10 .
- 5 -

Fig. 1. Sign of operation; 2) numerical digit
positions of numbers.

In the binary-coded decimal system, numbers take up all 40 bit po­
sitions, not counting the sign bit. Since 4-dlg3t binary codes are used
to code decimal digits, in this case the numbers represented will have
only 10 decimal digits with an accuracy of representation ranging up to
IO’10. As in the preceding case, the radix point is fixed ahead of the

highest-order digit position.

Fig. 2. 1) Operation code; 2) modification
indicator; 3) address.

We should note that binary-coded representation of numbers in the
computer is used only for numbers punched into tape, and for those num­
bers in OZU that are suitable for reading out by means of the special
subroutine for conversion from binary to binary-coded decimal. In the
remaining cases, numbers in memory units are stored in the straight
binary code. In the arithmetic unit and the control unit, numbers are
transferred in both the straight binary code and the ones complement,

Instructions for the "Kiev" computer take up 41 bit positions each.
- 6 -

The structure of an instruction is illustrated in Fig. 2. As we can see
from the figure, the five highest-order bit positions (from 37 to 41,
inclusive) of an instruction word are taken up by the operation code.
The remaining 36 bits form the address field of the instruction. Thus,
12 bit positions are set aside for each of the three addresses.

In loading and printing out, instructions are represented in the
octal code. Here four octal digits are set aside for each of the three
addresses, and two octal digits for the operation code. Thus every In­
struction is represented as a 14-dlgit octal integer.

Addresses are coded as follows (the same coding is used for all
three instruction addresses): locations in high-speed memory (OZU) have
octal addresses from 0000 to 1777, inclusive; here the number zero is al­
ways stored for the 0 address.* The PZU locations have addresses from
3000 to 3777, Inclusive. In this case, the passive memory of the "Kiev"
machine has three types of locations;

1) 8 locations for manually set-up words, addresses 3000-3007;
2) 184 locations for fixed wired-in words, addresses 3010-3277;
3) 320 locations for interchangeable wired-in words, addresses

3300-3777.
The last location of the last block in the interchangeable wired-in
storage block (with address 3777) is used for connection of the random­
number generator.

The hand-assembled words take the form of 41-diglt switch-control-
led locations (brought out to the control console) in which any words
may be set up manually.

The fixed wlred-ln storage block (PSP) contains permanently wired
codes for the constants most frequently used in the solution of prob­
lems, together with certain standard subroutines:

The fixed wired-ln memory contains:
- 7 -

Id ■■uni

1. Constants (location numbers 3010 to 3077)
2. Subroutine for converting from the binary system to tne decimal

system.
3. The subroutine for computing the logarithm in x.
4. The subroutine for computing 1/2 sin x.
5. The subroutine for computing 1/2 cos x.
6. The subroutine for computing Va.
7. The subroutine for computing (l/4)ex.

8. The subroutine for computing (1/pi) arc sin X.

9. The subroutine for computing (1/pi) arc cos X.

The interchangeable wired-in memory (SSP) is realized in the form
of separate blocks with 64 words each, containing library routines.
Each of the SSP blocks is set up as a plug-in unit, and can be replaced
at any time (independent of the other blocks) by a new unit having the
same capacity; depending on requirements, various of these units are
connected to the computer.

For coding of OZU and PZU addresses, 11 bits are sufficient; the
presence cf a one in the 11th bit position of an address is a sign
that the PZU is to be used, or the presence of a zero in the 11th bit
position of an address is an indication that the OZU is to be used.

The extra 12th bit position available in each address with the mem­
ory capacity used is not needed for address coding; it is used as an
indicator of address modifiability. Whenever a zero is contained in the
12th digit position of any address instruction, the machine will per­
form a call to memory on the basis of this address. If, however, the
12th digit of the address is a one, the corresponding call is effected
on the oasis of the so-called effective address, which is obtained by
adding to the address shown in the instruction the content of a special
address-modificatlcn register or A-register. This register consists of

- 8 -

10 digit positions, and can be used to store positive numbers from zero
to 1777, inclusive. With address modification, there is no overflow
blocking so that it is possible, for example, to modify an address 2666
with the aid of the number 1323 In the A-register and obtain as the
modified address 2667 + 1323 - 4000 = 213.*

The address-modification register is one of the computer program
registers. By program registers we mean those registers that carry in­
formation from one machine operating cycle (time required to execute
one working command) to another.

In addition to address-modification registers, the "Kiev" machine
has two additional special program registers: a link register (or R­
register) and a loop register (or Ts-register). Both these registers
contain 11 bits each.

The program registers also include the 11-bit instruction counter
(or S-register) and the 41-blt instruction register (or K-register).
The remaining registers of the "Kiev" computer are not used in program
writing, and do not carry information from cycle to cycle. They might
be called microprogram registers, since exchange of information among
them is carried out in accordance with fixed microprograms built into
the computer during construction, and not under the control of the pro­
grammer .
OPERATIONS PERFORMED BY THE COMPUTER

The operation field of an Instruction for the "Kiev" machine con­
tains five binary digits, which makes it possible to code 32 operations.
Since the operation with code zero is the zero operation, i.e., is not
executed, it is possible to code only 31 operations. In fact, 29 opera­
tions are realized in the computer.

The operations executed by the "Kiev" machine are divided into the
following five groups: arithmetic, logical, control-transfer, operations

- 9 -

with address-modification register*, operations with periphery equipment
(including magnetic-drum storage).

The execution cycle for each operation begins after the address
of the corresponding instruction has been set up on the Instruction
counter and concludes with formation in the instruction counter of the
address of the next Instruction to be executed. Here each successive
cycle begins with the transfer to the instruction register of the in­
struction whose address is contained in the instruction counter at the
end of the preceding cycle. As a rule, the content of the instruction
counter is increased by one in the course of the cycle, so that the
next Instruction in the sequence will be taken from the storage location
whose address is one greater than the address of the preceding instruc­
tion. In this case, we shall say that the next Instruction in sequence
is executed. This natural sequence of instruction execution may be in­
terrupted only by execution of control-transfer or group operations
when upon satisfaction of given additional conditions, the address
counter receives the content of address III or address II of the cur­
rent instruction or the content of the link register which (without an
increase by one) also serves as the address of the next instruction.
For brevity, we agree to say that in the given case the control trans­
fer is governed by address II or III or by the link register.

We agree to let a^, a2, a^ represent, respectively, addresses I,
II, and III of an instruction and, moreover, for any address c, we use
•c to represent the word stored on the basis of this address.

Turing to the characterization of the operations performed by the
computer, we shall first describe the arithmetic operations. There are
nine such operations in the computer: ordinary addition + (the octal
operation code is 01), subtraction — (code 02), subtraction of absolute
values | — | (code 06), multiplication without rounding x (code 10),

- 10 -

multiplication with rounding [r (coae 11), division : (code 12), numoer
normalization N (code 35)• The arithmetic operations also include in­
struction addition SjgK (code 03), and cyclic addition Ts + (code 07).

All arithmetic operations are characterized by the fact that where
there is a one in the 12th digit of any of the three instruction addres­
ses, the content of the A register is added to the corresponding address,
l.e., all operations are executed with effective addresses. Control
transfer is normal: after execution of an instruction with an arithmetic
operation, the next instruction in the sequence is always executed.

When the operations of addition, subtraction, division, and in­
struction addition are executed, the result may prove to be greater
than or equal to unity in absolute value. In this case, there is provi­
sion for halting the computer with delivery of an appropriate signal.
By setting a special switch on the control console, we can keep the
computer from halting when the available number of digit positions is
exceeded; the machine will continue to run even when there is an over­
flow; in this case, it skips the next instruction, naturally losing the
highest-order digits of the numbers.

In execution of an ordinary addition operation (+’), to the number
‘al there is added (algebraically) the number ’a2, and the resulting
sum is stored in accordance with address a^ (here and in the ensuing
discussion, all addresses are effective addresses.’).

Instruction addition (SlK) differs from ordinary addition in that
the number ’al is not added to the number 'a2 but to its absolute val­
ue (l.e., to the number ’a2 taken with a plus sign), while the result­
ing sum is again given the sign of the number ’a2. This operation is
used for instruction readdressing: the modified instruction is stored
according to address II, while restoration of the sign in the sum en­
sures that the highest-order digit of the operation code will remain

- 11 -

unchanged after readdressing (we recall that the highest-order digit of
the operation code in an instruction corresponds to the sign bit in a
number word).

Cyclic addition (Ts +) differs from ordinary addition only in the
fact that their is no blocking under an overflow. End-around carry
occurs from the sign bit to the lowest-order bit of the adder. The
cyclic-addition operation is used chiefly in check routines.

With the subtraction operation (—) the difference ,a1 — *a2 Is
stored on the basis of address a3; with the subtract absolute values

'

operation (| — |), the same thing is done with the difference of the
absolute values | ’al| — | ’a2| .

In the operations of multiplication without rounding (x) and divi­
sion (:) address II determines the location in which the numbers •a1 x
x ’a2 and ’a1: 'a2, respectively, are stored. Here in the case of multi­
plication with rounding (E) a one is added to the highest-order digit
discarded.

We should look in more detail at the operation of number normaliza­
tion (N). We shall say that a number n is normalized (in the binary num­
ber system) if it is represented in the form

n = ± 2*m,
where m = 0.1 m^m2 ..., while k is a positive or negative integer. The
number k is called the exponent of the number n and the number m is
called its mantissa. The inequality

1 >m >1/2.
is always valid for a mantissa.

In the "Kiev" computer, the maximum value of an exponent is taken
as 63. Thus, six binary digits are needed to represent an exponent. The
normalization operation consists in normalization of the number ’a^;
the exponent of the normalized number is transferred on the basis of

- 12 -

address II (occupying the six lowest-order digits of the word), and the
mantissa according to address III.

We now turn to the logical operations, of which there are four in
the computer: logical shift L -* (the octal operation code is 13), logi­
cal multiplication V (code 14), logical multiplication A (code 15), and
the digit-by-digit operation of logical inequality = (code 17). Execu­
tion of all the logical operations is accompanied by the normal control
flow (the next instruction in the sequence is executed). As in the case
of the arithmetic operations, all three addresses may be modified.

In the logical-shift operation (L ->) all 41 bits of the number ‘a^
are shifted (including the sign bit) by a number of digits equal to the
absolute value of the shift constant contained in the six lowest-order
bit positions of location a1. If the shift constant is positive, a left
shift occurs; if the constant is negative, their is a right shift. Di­
gits of the number that overflow the digit-position format during shift­
ing are lost, and they are replaced at the opposite end by zeros (a
shift by 41 or more digits will convert any number to a zero). The shift­
ed number is transferred in accordance with address III.

The three remaining logical operations are performed digit-by-di-
glt on all 41 bits of the words 'a1 and 'a2, so that the nth digit of
the result will depend solely on the nth digits of the words ’a.^ and
•a^. As in the preceding cases, the results are transferred according
to address III.

The logical addition operation (disjunction) is represented by
V and is defined by the relationships 0 v 0 = 0, 0 v 1 = I. I V 1 = 1, 1 V0= 1.

The logical multiplication operation (conjunction) uses the symbol
A and is defined by the relationships o A 0 = 0, 0 A I — 0. IAO~O, I A 1 = 1.
while the operation of logical inequality uses the symbol = and is de­
fined by the relationships 0 « 0 =0, 1 -^0 = 1, 0 1 = I, I cs 1 - 0.

13 -

In the "Kiev" there are seven control-transfer operations: ordin­
ary comparison Crl (octal operation code 04), comparison of absolute
values Cr2 (code 05), exact comparison Cr3 (code 16), conditional Jump
on sign of number UPCh (code 31)» conditional Jump to subroutine UPP
(code 30), Jump on link register PRV (code 32), unconditional computer
halt Ost (code 33). All addresses can be modified in all of these con­
trol-transfer instructions except for the Jump on link register and
halt instructions.

The ordinary comparison operation (Crl) consists in comparing the
numbers *a1 and ’a2. If ’a^ < ’a2, control Jumps to the instruction in­
dicated by address a$; if, however, ’a^ » ’a2, the next instruction
in sequence is executed.

The compare absolute values operation (Cr2) differs from the ordin­
ary comparison operation In that it compares not the numbers ’a^ and
•ag, but their absolute values (moduli).

The exact comparison operation (Cr3) means that control Jumps to
the instruction indicated In address a$ if the numbers •a1 and 'ag co­
incide in magnitude as well as sign. Where the numbers 'a^ and 'ag are
not equal, the next instruction in sequence is executed.

Conditional Jump on sign of number (UPCh) means that control is
transferred to the instruction Indicated by address a2 if the sign of
number ,a1 is positive, and to the instruction indicated by address a^
in the opposite case. In the computer, zero may be either positive or
negative (a zero obtained as the difference of two equal numbers will
have a positive sign).

The conditional Jump to subroutine (UPP) accomplishes the follow­
ing operations: if the number 'a.^ is positive (or zero) the next in­
struction in sequence is executed; if, however, the number 'a^ is nega­
tive, control Jumps to the Instruction shown in address a^. Simultan-

- 14 -

"W—»W ■»»»« **»

eously, the number a2 (not *a2!) is transferred to the link register
(the earlier content of this register is erased). As a rule, every UPP
is employed to go to a standard routine. Then the number a2 indicates
the address of the instruction to which the machine is to go after exe­
cuting the subroutine. The standard routine must terminate in a special
"jump in accordance with link register" instruction.

The link-register jump (PRV) represents an unconditional transfer
of control to the instruction whose address is indicated in the link
register. The address field of the PRV instruction itself is not used
in this case, so that it may contain any values.

The halt operation (Ost) indicates an unconditional computer halt.
As in the preceding case, the address field of this instruction is not
used. In the "Kiev" computer, in addition to the program halt there are
also two possible check halts. One of them stops the conputer when it
executes an instruction whose address has been set up on the special
register at the central control console. The second check halt occurs
where the third address of an instruction executed by the computer coin­
cides with an address set up at the control panel by means of switches.

Let us turn to the description of the operations with address-mod­
ification register, which are the most complex operations performed by
the "Kiev" computer. This group contains a total of three operations:
meeting of the A-reglster according to the specifer (specifier calling)
F (octal code 34)> beginning of group operation NGO (code 26), and con­
clusion of group operation OGO (code 27). When operations of this group
are executed, any address modification must be particularly specified
when each of the operations is described.

For the F operation, the part of the word ‘a^ from the 13th to the
24th digits Inclusive (in other words, address II) is transferred to
the A-register (the earlier content of this register is forced out).

15 -

In addition, the number *m is transferrred Into the location with ad­
dress a$; here m Is the number that has been transferred into the A-reg­
ister. Address II Is not used with the F operation. Control flow is
natural, i.e., after the F operation, the next instruction in sequence
is executed. The F operation makes It possible to code cyclic processes
of arbitrary complexity in fixed storage.

We should note that the F operation may be used simultaneously to
transfer a code given by an address of its address (an address of rank
two) into any location in the OZU.

Taking the address 0000 as a^, we obtain the possibility of using
the F operation solely to set the A-register. Here in any case, it is
possible to use natural address modification in subsequent program in­
structions .

The other two operations of this group (NGO and OGO) are used in
programming loops, and bear the special name of group operations.

With the NGO operation, the number a1 (not ’a^) is transferred to
the loop register, l.e., the content of address I of the NGO instruc­
tion, while the number a2 (not ’a2!) is transferred to the address-mod­
ification register, i.e., the content of address II of the NGO instruc­
tion. If after this, the contents of the loop register and address-mod­
ification register prove to be the same, control Jumps to the instruc­
tion Indicated by address a^, otherwise to the next Instruction in se­
quence .

With the OGO operation, the content of the address-modification
register is Increased by the content of address I of the OGO instruc­
tion (the number a^, and not ’a^:). If after this the contents of the
loop register and the address-modification register are the same, con­
trol Jumps to the instruction indicated by address a^, otherwise to
the instruction indicated by address a2.

- 16 -

In order to perform an identical set of operations on a group of
numbers situated in locations whose addresses form an arithmetic pro­
gression with exactly the same difference p, we can use the NGO opera­
tion to transfer a number equal to the content of the address-modifica­
tion register into the loop counter; this is needed to execute the in­
dicated set of operations on the last numbers of the group. Then the
program segment realizing the given set of operations on the group of
numbers may begin with the NGO instruction and end with the OGO instruc­
tion. Between these instructions there should be the given set of in­
structions, for which it is necessary to insert ones in the 12th digit
positions — the address-modifiability indicators. The NGO instruction
must be executed exactly once, while the OGO instruction Is repeated
cycllcly until the operations have been performed on all numbers of t he
group. The second address of the OGO instruction should give the address
of the initial instruction.

The last group of "Kiev" machine operations contains six operate ons
with periphery equipment. Three of these are operations with magnetic
drum: preparation for call to magnetic drum MBP (octal operation code
25), operative instruction for writing words MBZ (code 23), and opera­
tive instruction for reading words MBCh (code 24). The three other op­
erations perform data loading and readout: load numbers VI (code 20),
load instructions V2 (code 21), and readout Pech (code 22).

All operations with peripheral equipment are group operations. They
disrupt the content of the address-modification register.

The MBP operation is a preparatory operation for exchange of words
with magnetic drum. The content of address II of instruction a2 (not
’a^!) Indicates the number of the magnetic drum and the number of the
channel with which words will be exchanged upon execution of the follow­
ing operation (MBZ or MBCh). The content of address III of Instruction

17 -

(and not ’a^!) specifies the number of the number in the selected
channel with which the exchange of words begins. The content of address
I of the MBP instruction may take on only two values: zero, If the In­
struction prepares for writing onto magnetic drum, and one if it pre­
pares to read from it. After execution of the MBP operation, control
Jumps to the next Instruction in sequence, which must be MBZ or MBCh.
It is necessary to note a special feature of the formation of address
II in the MBP instruction. Two binary digits are sufficient to code
three drum numbers. Actually, in order to preserve the convenience of
writing instructions in the octal system, the third octal digit posi­
tion of address II is set aside for coding the drum number.

The MBZ operation accomplishes writing of codes from OZU or PZU
onto magnetic drum. The numbers of the locations with address from a.^
to a2, inclusive, are written onto the magnetic-drum channel that has
been prepared by the preceding MBP operation. After execution of the
MBZ operation, control is transferred to the instruction associated
with address a .3

The MBCh operation represents readout from magnetic drum of a code
block, and writing of the block into OZU. The codes for the drum called
for by the preceding MBP operation are written into OZU locations with
addresses from a.^ to a2, inclusive. After execution of MBZ or MBCh op­
erations, control Jumps to address a^.

Execution of both operations (MBZ and MBCh) is accompanied by auto­
matic switching to the next channel in order of the same magnetic drum
when the numbers being transferred will not fit into a single channel.
Switching does not occur from the last (24th) channel of each drum.

The load numbers operation means that a block of numbers is intro­
duced from punched tape or punched cards Into OZU locations with ad­
dresses from a^ to a2, Inclusive. Here the numbers are automatically

- 18 -

converted from the decimal system into binary. With loading from punch­
ed cards, the zone number is specified in address III of the instruc­
tion; the first of the numbers to be loaded is determined by the begin­
ning of the given zone, and the last number by the quantity of numbers
to be loaded.

The load instruction operation differs from the load number in­
struction only in that there is no conversion from decimal to binary.

The readout operation means that a block of words is read out from
OZU locations with addresses from a1 to a^, Inclusive. Following execu­
tion of the operation, control is transferred to the instruction with
address a3. By means of a special switch, the machine can be made to
either print out or punch out the codes. In like manner, an additional
switch may be used to select the type of printout: decimal (four num­
bers) or octal (four Instructions). We recall that for decimal printout,
the number block being printed out must first be converted with the aid
of a special routine to the binary-coded decimal number system.

The computer may be initially started up in two different ways.
First, following preliminary establishment of the computer in the ini­
tial configuration, we can use the control-console switches to set up
the load instruction (four numbers or instructions). By starting the
machine to run in the console-instruction read mode, we accomplish
loading of the initial Information into the computer. Following this,
it is necessary to set up at the control console the address of the
first program Instruction, and to start the computer for solution of
the program.

With the second method, the initial load instruction is set up on
one of the switch registers of the PZU, while the address of this in­
struction is set up at the control console. After the button is pushed,
loading begins, and then the computer automatically goes to execution

- 19 -

' 1 •
-..> jJBK -- Jflgfc.... jftjmr-

of the program that has been loaded.
REPRESENTATION OF CODES IN THE COMPUTER
Representation of Numbers

The "Kiev" computer operates with binary numbers, represented in
a fixed-point system. Of the cell digit positions, 40 are used for the
number mantissa, and one (the 41st) for the sign of the number (see
Fig. 1): 0 corresponds to a plus sign, and 1 to a minus sign. Thus the

-40 -40computer operates with numbers in the range from —1+2 to 1 — 2
-40Numbers smaller in absolute value than 2 are written into a location

as a machine zero. In this case, -O < +0.
The following system has been adopted to shorten the representation

of binary numbers. The binary number is divided into groups, of which
the first contains two binary digits, including the sign bit, while
the rest consists of three bits each (a total of 14 groups). Next the
groups are coded by means of the corresponding octal digits. Thus, the
negative number with code 1*1 110 010 011 010 100 001... is written as
3 623 241 ..., while a positive number with code 0,1 110 010... is
written as 1 62... .

To convert numbers from the decimal uystem Into the representation
used for the machine, the following method is convenient: an n-digit
number is multiplied by 2: the (n + l)-th digit of a positive number is
the first number in the desired representation. The (n +)-th digit of
a negative number, increased by two, is the first digit of the desired
presentation. The remaining n digits of the result (remainder) are mul­
tiplied by 8. The (n + 1)-th digit is the second number of the desired
representation. All successive remainders are similarly multiplied by
J. The process is continued until a 0 appears in the remainder, or un­
til the required accuracy is obtained. As an example, conversion of the

20 -

number 0.625
0 625 x 2
1 250 x 8
2 000

yields the result 12 0000 0000 0000. Conversion of the number —0.625
yields the representation 32 0000 0000 0000.

The binary-number notation used results in a uniform representa­
tion for numbers and instructions, and this is the essence of its con­
venience .

Decimal numbers are loaded into the computer in binary-coded deci­
mal form. In this case, four binary digits are used to represent one
decimal digit. Thus, a maximum of ten decimal digits can be loaded into
one machine location or printed out.
Representation of Commands (Instructions)

In the computer, numbers and instructions can be coded in exactly
the same ZU locations. A word of the "Kiev" machine contains four
groups of digits: operation code (address 0) and three addresses (I, II,
III). The operation code, contained in the zero address determines the
Interpretation of the addresses. The five highest-order digits are set
aside for the operation code, and 12 digits for each of the addresses.
The highest-order digit position in each of the addresses is used as an
indicator of address modifiability (group-operation flag).

When we work on coding sheets in octal numbers, the address is
coded together with the modifiability indicator. Thus, in the octal
system, the modifiability indicator of an address will be the relation­
ship a > 3777. To show that an address is modifiable, we must add the
number 4000 to it.

The computer will not execute an instruction whose code consists
of zeros. After the computer has idled for a working cycle, control
Jumps to the instruction with the next number.

- 21 -

' ""■I!"... f'i'fijj mu

I* Manu­
script
Page
No.
7

9
11

[Footnotes]

All addresses and address-modification constants are given in
the octal number system here and in the ensuing discussion.
See the footnote to page 7.
Here and in the ensuing discussion, we use ’ai to mean the content of the memory location having address ai.

22

Chapter 2
PROBLEM OF VALIDATING THE CHOICE OF FUNDAMENTAL CHARACTERISTICS

UNIVERSAL ECONOMIC CRITERION FOR EFFICIENCY OF AUTOMATIC DIGITAL COM­
PUTER

When starting work on the creation of the "Kiev" electronic compu­
ter, the development group had no fundamental criteria available for de­
termination of the degree of efficiency of the machine to be built.
Thus selection of basic parameters for the "Kiev" machine was accom­
plished by intuition and generalization of experience accumulated at
that time. It was only at the second stage of the work (195$) that
V.M. Glushkov [2] proposed a universal economic criterion making it pos­
sible to compare the efficiency of computers of extremely different
types. This criterion came to be called the cost of effective speed cri­
terion.

The cost of effective speed criterion is based on two notions.
The first of these consists in an economics approach to evaluation of
computer productivity, which is easily understood on the basis of tne
following example. Assume that computers A and B have been developed to
solve a certain class of problem; computer A is twice as fast as compu­
ter B. Can we say that computer A is more efficient than computer B?
Obviously not. It might turn out that computer A was far more expensive’
than computer B, requires greater operating expenses, etc., etc. It
therefore might turn out that the total expenditure for solution of some
class of problems on computer A is, for example, six times the analogous
expenditures for computer B. Thus, for exactly the same sum, we might

- 23 -

PB»|||I-Wil wI III. || I -------- ; ITIIIJ, /■ I .1..

have six type B computers in place of one A computer; these six compu­
ters, in exactly the same time, might perform three times the work that
computer A can do. Thus, from the viewpoint of economic planning, the
slower computer might prove to be more efficient than the higher-speed
machine. It is precisely for this reason that it proves desirable in the
solution of many problems to employ desk calculating machines, whose
operating speed is less by factors of tens of thousands than that of
electronic digital computers. The determining factor is not speed in it­
self, but the value of the speed.

Of course we must remember that allowance for economic factors,
at least In the form Just discussed, cannot be made the overriding fac­
tor in every case. Actually it may turn out, for example, that it Is
so important to solve a problem in the least possible time that it is
necessary to attempt to increase speed as much as possible, without
reckoning with expense. This might also be true with respect to certain
other factors (machine size, power requirements, etc.). The economic
criterion may be modified, however, so as to cover these exceptional
cases as well.

The second idea underlying the criterion of cost of effective
speed consists in the notion that the rate at which the computer exe­
cutes various elementary operations (addition, multiplication, etc.)
does not determine computer speed, even for program-controlled automa­
tic computers. In fact, it is well known that computer operating speed
may be substantially Increased by Intelligent selection of control oper­
ations and program registers (so-called machine logic). Such computer
parameters as size of high-speed memory, rate of transfer from external
memory, loading and readout speed may have a substantial influence on
the speed with which the machine solves problems. Finally, we must not
forget that the true speed of a machine is reduced sharply if its re-

- 24 -

liaollity is low, since in this case it is necessary to expend much
time not only to eliminate machine malfunctions, but also to perform
multiple check calculations, duplication of modifications, etc.

In talking of the value of speed, we have in mind not the ordinary
nominal speed, i.e., the rate at which the computer executes the funda­
mental arithmetic operations, as shown in the specifications for the
computer, but the effective speed; this concept takes into account the
reduction in speed owing to operations involving peripheral equipment,
duplication of calculations to obtain adequate reliability of the re­
sult, and other similar factors. •

Let us now turn to a more exact formulation of the criterion of
cost of effective speed. Let there be specified a certain class K of
problems which are to be solved by computer A. We shall assume that we
have been given a statistic for class A such that for each problem k
in K, we are given the relative frequency f(k) with which this problem
will be encountered in solving problems of class K in the course of an
infinitely long period of time.

We further specify a certain typical set 0 of operations for a
general-purpose digital computer and assume that for each problem k in
K, we know the number <p(k) of operations in 0 needed to solve the prob­
lem. Then any work toward solution of problems in class K perform i by
computer A can be characterized by the number of operations of the typi­
cal set needed to perform the same work. We now specify a certain fair­
ly long time Interval T (it is desirable to take a time of the order of
10 years for T) and compute the amount of work that machine A will per­
form over this period, with allowance for time lost for preventive main­
tenance, duplicate calculations, operations with peripheral equipment,
etc. Let this volume of work be represented by the number N = N(T) of
operations from the typical set. Dividing N by the number of seconds in

25 -

T, we obts .n a quantity ne, which we call the effective speed of the
computer.

We a]30 compute the total expenditures Z(T) for the manufacture,
amortization, and operation of the computer over the time T. The total
expenses will contain, in particular, expenditures for operating person
nel and electric power. It is not desirable, however, to include expen­
ditures for programming of problems in Z(T), since these expenses de­
pend not so much on machine design as on available programming prere­
quisites (primarily on the size of the standard-routine library). Now
the cost of effective speed q is computed from the formula

„ _ 2 (T) _ Z (T) /, \

We can understand without difficulty that one of the fundamental
problems facing the computer designer is to reduce the cost of effec­
tive speed as much as possible.

In order to exclude the effect of Indeterminacy in the choice of
the time Interval T, we could go to the limit in Formula (1)

In practice, however, this limit can be attained with adequate ad­
equacy for values of T of the order of 10 years or more. In addition,
we should not forget that when T -* », we eliminate allowance for obso­
lescence and the need to replace old equipment. It is thus obviously
more sensltlble to select a value of T equal to 10 years.

We note that while the quantity Z(T) can be calculated without
two much difficulty, N(T) depends heavily on the statistic for the class
K of problems to be solved which, as a rule, will not be known. Even
where we know the statistic for class K, however, it is very difficult
to compute the value of N(T) exactly. In many cases, therefore, the best
method involves a rough calculation of the coefficient £, equal to the

- 26 -

ratio of the effective computer speed to its nominal speed. To compute
the coefficient p, we may make use of the approximate formula

P = PoPnpHptP*- (2)
Here pQ is the ratio of the rated computer speed, expressed in opera­
tions of the typical set, to the rated speed, expressed in actual ma­
chine operations. The coefficient p$ is determined by the machine oper­
ation set and by the statistic for the problems to be solved. It may
be greater than or less than unity. We use p to represent the computer
time utilization factor (equal to the amount of time spent in solving
problems); it will always be less than unity. As a rule, p will have a
value in the range 0.7-0.9.

We use pm and pv to represent coefficients indicating the decrease
in speed owing to operations with magnetic drum and magnetic tape (pm)
and owing to operations with input-output devices (py). These coeffi­
cients are determined by the capacities of working memory, rate of ex­
change of information with peripheral equipment, and the statistic of
the class of problems solved. They will always have values less than
unity.

Finally, p. is coefficient Indicating the reduction in machine
speed owing to program control, duplicate calculations, and other meth­
ods for checking correctness of results yielded by solution of a prob­
lem. This coefficient will also be less than unity at all times. Its
value is primarily determined by the dynamic reliability of the compu­
ter (malfunction probability), and also depends on the statistic for
the class of problems solved.

The "Kiev" computer must solve fairly complicated problems, so
that no large error will result if we take a value of 0.1 for the coef­
ficient £ in this case. Obviously, the same value of the coefficient
p may be taken for other computers having working-memory capacity of

- 27 -

.
dr**" ir. —. 1—r.-- r-.....—ir rlmr i.i.nr 4 ;t. ..i.l Jinx

the order of 1000-4000 numbers.
We use n to represent the nominal machine speed (average number of

operations per second performed by the computer when working with hlgh-
Q

speed memory); since there will be about 3*10 sec in 10 years, we ob­
tain the following formula for the cost of effective speed

(3)

We note that even when Z(T) is expressed in kopecks, Q will be consid­
erably less than unity. It is therefore desirable to express q in ko­
pecks per thousand operations or In rubles per million operations.

For the "Kiev" machine with T equal to 10 years, the value of Z(T)
will equal roughly 1.2 million rubles (0.4 million rubles initial cost,
0.5 million rubles amortization, 0.1 million rubles electric power,
0.2 million rubles operating-personnel salaries, including keypunching).
Thus the cost of effective speed for the "Kiev" machine is represented
by the approximate value

r 10*. 040,0004 k°Peck/operation

or 0.4 kopecks per thousand operations, or 4 rubles per million opera­
tions .

For the ’’Ural" computer, in the early models, the quantity Z(T)
was reduced to roughly 0.4 million rubles. The effective speed (the
value pn) for the"Ural” was barely more than 15 operations/sec. Thus
the cost of effective speed for the ’’Ural” computer is represented by
a quantity of the order

3*io* ■ TT “ 0,°l kopeck/operation,

or 10 kopecks per thousand operations or 100 rubles per million opera­
tions .

Thus, under the given conditions, the "Kiev" machine is a computer

28 -

that is roughly 25 times as efficient as the "Ural.” We should remember,
naturally, that such an estimate is valid only provided the same class
of problems is solved on both machines, and these problems are fairly
complex, characterized by a fairly large ratio of the amount of inter­
nal machine time to input-output time. If this stipulation is not met,
the picture changes sharply, since in the solution of short problems
with much input data, the advantage may prove to rest with the ’’Ural"
computer.

To conclude, we note that allowance for all factors affecting the
effective speed of a computer frequently proves to be extremely diffi­
cult. It is very hard, for example, to compute the value of the coeffi­
cient pk with any great accuracy. Thus in practical work it is desira­
ble to use simplified computations based on the fact that one or several
of the coefficients pQ, pp, pm, pv, p^ is assumed to equal unity. Such
a simplification turns out to be quite acceptable where the criterion
of cost of effective speed is used to determine the optimum value of
a parameter that has little Influence on the coefficients that have
been set equal to unity. Moreover, instead of minimizing the cost of
effective speed, we could attempt to maximize the effective speed it­
self without reference to cost.

It is also necessary to note that with the modern state of the
theory of electronic computers, as a rule, an exact estimate of effect­
ive speed proves possible only on an a posteriori basis, since there
exist no satisfactory methods for the a priori estimation of machine
dynamic reliability (malfunction probability). In addition, the statis­
tics characterizing the class of problems to be solved will not be
known in advance, as a rule.
ADDRESS FORMAT AND WORD LENGTH

The question of the desirable number of addresses to use in a gen­
29 -

eral-purpose electronic digital computer may be solved on the basis of
the cost of effective speed criterion. Here the statistic characteri­
zing the class of problems to be solved will play a fundamental role.
Since for the "Kiev" machine, no such statistic was available, the
problem of its address format could only have been solved on the basis
of elementary qualitative considerations. It is easy to understand that
the cost of effective speed criterion depends on the efficiency with
which the equipment is utilized and, in particular, on the presence or
absence of superfluous information transfers within the computer. From
this viewpoint, in machines using parallel word transfer, the single­
address instruction system may prove to be most efficient.

The loss of efficiency in equipment utilization that appears when
multiaddress Instructions are employed is easily demonstrated, using
the example of obtaining the sum of three or more terms. Actually, when
the sum x + y + z is computed, where a three-address instruction system
is used, the result of the first addition x + y is placed into some
storage location only so that the next instruction can again extract it
for transfer to the adder.

When single-address instructions are used, however, we usually
must face the problem of the difference in number-word and instruction-
word lengths, which leads either to a decrease in efficiency of ma­
chine storage utilization or to complication of the wiring. Taking
these additional considerations into account, we may assume that a
three-address instruction system is roughly equivalent to a single-ad-
dress system. The decisive factor, dictating the choice of the three-
address system for the "Kiev" machine was experience gained by the
staff of the Computer Center of the AN UkSSR in working with three-
address machines.

The statistic characterizing the class of problems to be solved
- 30 -

proves to have a decisive influence on the selection of number system
and number representation (fixed or floating point). Of the two number
systems — decimal and binary — common in world-wide mathematical ma­
chine design, the binary system provides more efficient use of equip­
ment from the viewpoint of internal machine operations. The decimal
system offers definite advantages in Information readln and readout,
however, since no additional operations are needed to convert numbers
from one system to the other.

Thus, the choice of a given number system is dictated primarily
by the nature of the problems to be solved by the computer. For prob­
lems involving relatively small volumes of data readln and readout op­
erations as compared with the number of operations performed on the in­
formation Itself within the machine, it is better to use the binary
number system. This is the situation for solution of the majority of
complex scientific problems, for which the "Kiev" computer was basical­
ly designed. Thus we selected the binary number system for its Internal
system.

The choice of a number-representation system (floating- or fixed-
point system) is dictated primarily by the nature of the problems to
be solved by the computer. Where the machine is to solve chiefly non­
arithmetic problems and arithmetic problems for which the number expon­
ents are roughly of the same order, the fixed-point system provides a
lower lost of effective speed, and as a consequence is preferable. For
problems in which it is frequently necessary to change the scales of
numbers in the course of the calculations, the floating-point represen­
tation offers great advantages and great convenience in programming of
problems.

It should be noted, however, that use of a floating-point system
frequently does not eliminate the necessity of estimating in advance

31 -

the orders of magnitude for numbers appearing in the course of problem
solution. If this is not done, we may encounter a continuous loss of
accuracy when the difference between two numbers of similar magnitude
is computed. Especial danger is presented by the fact that when the
floating-point system is used, such a loss in accuracy may occur un­
detected, since the mantissa will always retain exactly the same number
of significant figures. For example, when the formula u = (x — y)z is
used in computations for x = 0.1278, y = 0.1273, z = 0.9812, the re-
suit u = 10-3 x 0.4906 will give a completely false impression of the num­
ber of valid digits, while where the fixed-point system is used, the
result u = 0.0005 will at once Indicate that a loss of accuracy has
occurred.

Finally, let us consider the last question associated with the
representation of numbers in the computer — the choice of word length.
As a point of fact, for the "Kiev" machine, this problem was determined
by the condition requiring number words and instruction words to be
of the same length; satisfaction of this condition offers important ad­
vantages from the viewpoint of efficient use of memory. The length of*
an instruction word was determined by the necessity of coding 29 oper­
ations and three addresses. Since memory size (allowing for a reserve)
was set at 2048 = 211 numbers, while one bit in each address was set

aside for the modification Indicator, the instruction word length is
5 + 3(11 + 1) = 41 binary digits. The length of a number word (with
the sign bit) was taken to be the same.

To solve the problem of whether the number-word length is adequate,
we must consider the nature of the problems to be solved on the computer.
Two characteristics are of basic importance here: the maximum result
accuracy required and the maximum length of a sequence of consecutive
calculations in which rounding error will accumulate.

32 -

Let us study the effect of the last factor in more detail. For sim­
plicity we shall assume that for the execution of each individual oper­
ation in the sequence of operations the rounding errors are independent
random quantities, while the total rounding error for each sequence will
equal the sum of the rounding errors for each individual elementary
stage of calculation. The rounding error for an arbitrary (ith) stage
of calculations will be distributed uniformly between minus one-half
and plus one-half of a one in the lowest significant digit.

The total mean-square rounding error on (in terms of the lowest-
order significant digit) for n stages will then be determined by the
formula

(4)

Since the integrals of the products x. x. vanish, Formula (4) will take
the form

(5)

It is well known that the distribution of sums of Independent ran­
dom quantities of the type under consideration are described by the
normal law with sufficient accuracy for fairly small values of n (of
the order of several tens). Thus with probability 0.9, the total round­
ing error will not exceed twice the mean-square error

(6)
We shall now assume that we are using a number system with base a

and that we have m additional digits to compensate for the rounding
errors. In this case, a one in the lowest significant digit in the last
analysis will amount to, obviously, am units in the lowest-order sijni-

- 33 -

ficant digit retained in the course of calculations. As a consequence,
to retain an accuracy of one unit in the lowest-order significant di­
git in the final result with probability 0.9, we must ensure that the
inequality

2« = ^<o”. (7)

is satisfied. Since a will always be greater than unity, then

Formula (8) and its variant form
n < 3a2" (9)

make it possible to estimate the required number of additional digits
m needed to compensate for rounding errors (with an accuracy of 0.9)
in sequences of calculations cf length n.

In particular, letting m = 1 and a = 10 we find that the familiar
rule of A.N. Krylov on the need to retain one superfluous decimal di­
git in Intermediate calculations yields satisfactory results when the

p length of the calculation sequence does not exceed 3*10 = 300. This
case usually occurs in manual calculations, but when automatic digital
computers are used, the maximum calculation-sequence length rises
sharply. We shall assume that it is necessary to obtain a calculation
accuracy for a sequence length of the order of three million. We then
find from Formula (8) that to compensate for rounding errors we must
keep an additional £ log 10^ = 3 decimal digits during the calculations,
or i logg lO^ « 10 binary digits.

As we know, in the "Kiev" computer there are 40 bits available for
coding words. Discarding the 10 bits used to compensate for rounding
errors, we obtain 30 binary (or about 10 decimal) digits, which gives
us an idea of the possible greatest accuracy of results. Actually, re­
sult accuracy is reduced owing to Incomplete utilization of the avail-

- 34 -

"4*

able number of digits in fixed-point calculations. An exact determina­
tion of the magnitude of this decrease is possible only for each con­
crete case, however. We note, moreover, that the decrease in accuracy
due to incomplete utilization of the digits of a number may be elimina­
ted, in great measure, by careful scaling of the numbers.
STORAGE CAPACITY

As any programmer who has handled complicated problems for compu­
ter is well aware of the inconvenience of the fairly small OZU capacity
in present-day computers. Thus, all other conditions being equal, it
is desirable to attempt to make the OZU capacity as large as possible.
We must not forget, however, that an increase in OZU volume will lead
to more complicated circuitry, increasing transient time in control
circuits and reducing operating speed. Thus if we are to be guided only
by the criterion of maximum effective speed, it is necessary to solve
the problem of finding optimum OZU volume.

Let us look at one possible method for solving this problem. We
must at once note that any method inevitably must deal with large
numbers of unknown factors, which at the present time can only be esti­
mated roughly. Thus the value of the method discussed should not be
overestimated: it can only give a very rough estimate for optimum OZU
volume.

We agree that we shall consider only with an OZU of a particular
type, namely, a ferrite-core array. If we let x be the capacity (num­
ber of locations) of such an array, it is natural to assume that the
access time for a single location is represented by the formula

/oop =■= a 4- b Vx. (10)
where a is a constant representing the time spent in ferrite magnetic
reversal; b is a constant characterizing the time lost due to tran­
sients in control circuits.

35 -

«

We must also specify a certain function f(x) representing the aver­
age number of operations performed in an OZU with a capacity of x loca­
tions without recourse to external storage units VZU. Naturally, this
function will depend on the class of problems to be solved, and thus
cannot be determined once and for all. It is apparent that the relation­
ship

f(x)=x3. (11)
will reflect the essence of the matter fairly well for a general-pur­
pose machine.

It is also necessary to specify at least two parameters character­
izing the VZU, namely: the average waiting time c and the time required
to pick out and write a single word d. In addition, it is also desirable
to Introduce the function cp(x) equal to the mean relative proportion of
problems that may be solved by the use of an OZU with a capacity of x
locations without recourse to the VZU.

As for the actual call to the VZU, to keep the discussion simple
we shall assume that this call consists in complete regeneration of the
OZU contents with preliminary readout of the old contents into one of
the VZU.* For simplicity, we shall also assume that the call occurs on­
ly for one (initial) point in a VZU for writing, and also to a single
point in reading.

If we now let t be the average time required to execute one opera­
tion in the arithmetic unit of the computer, while £ is the number of
addresses in an instruction, the mean time _t required to execute one
instruction in the computer (allowing for a call to the VZU) will evi­
dently be represented by the formula

« = (l(P + 1) (a + <> + ’) ((x) + d - <p (x» (2c + 2dx)): «x) -
- (P + 0 (a +1> Vx) + ’ + 2 (c + tfx).

Discarding the constants, we face the problem of minimizing the
- 36 -

expression
v = (p+l)dV7+2l-_rJ(C4.dX). (12)

Let us solve this problem for a three-address machine on the assumption
that

/(x) = x\ ?(*)=■ 0,

so that

v = 46 + 4- y •

After differentiation with respect to x we set the resulting ex­
pression equal to zero, arriving at the equation

bx9]/^x—dx —2c = 0. (13)

Expressing the time in microseconds and assuming that the tran­
sient time in the control circuits of the array is 1 nsec per thousand
numbers, we find from Formula (10) that b « 1/30. It is not difficult
to see that Eq. (13) will give an optimum high-speed memory volume that
is smaller the smaller the coefficients d and £, l.e., the faster the
VZU operate.

In order to reduce OZU volume in the "Kiev" machine, we employed
magnetic-drum external storage, which provides more rapid access than
magnetic-tape memory. There are three magnetic drums with a total capa­
city of 9000 words. The drums turn at a rate of 15,000 rpm, correspond­
ing to an average waiting time of 20 msec. If we also take into account
the relay-switching time, we obtain an average waiting time of about
25 msec, or 25,000 msec. The access time for a single word is 60 msec.
Inserting this data into Eq. (13), we arrive at the equation

—60-50000-0. (14)

This equation has a single positive root equal roughly to 340. We should
note, however, that the calculation did not allow for the necessity of
magnetic-drum channel switching during larger transfers or the possibil­
ity of small transfers from different points in the same channel. If we

- 37 -

take these possibilities into account, we would have to increase the
optimum OZU capacity. Finally, if we discard even these factors, which
are difficult to compute, and assume that the function fx equals not
x , but x^, we have in place of Eq. (4) the equation

2bx* — dx — 3c-fO, (15)
which has a positive root equal roughly to 1600 if we use the same val­
ues for the parameters b_, c, and d as before.

Thus, the high-speed memory capacity of 1024 numbers used in the
"Kiev" machine is at least of the same order as the calculated optimum
OZU volume.
SET OF OPERATIONS

When the designer specifies the set of operations for a digital
computer, being guided by the special features of the problems to be
solved by the machine, he must ensure the maximum possible reduction in
effective-speed cost while simultaneously providing adequate program­
ming convenience.

Since a priori estimates for the cost of effective speed criterion
turn out, as a rule, to be impossible, we must resort to other types
of simplication. One of the most common simplifications consists in
varying the set of computer operations within reasonable limits, so as
to increase as far as possible the value of the coefficient pQ in Form­
ula (2). In other words, the set of operations is so selected that in
solving the problems most typical for the given computer, the machine
can make the most efficient possible use of these operations. It is us­
ual to take as a standard the operations in some predetermined standard
set of operations 0.

For a general-purpose digital computer, moreover, it is necessary
to ensure the universality of its operation set. Since there has so far
been considerable confusion as to the nature of the concept "general-

- 38 -

purpose computer” we shall first of all define it more precisely. To do
this, we must become acquainted, in general terms, with the concept of
the Turing machine, proposed by the English mathematician Turing in
1936.

The Turing machine is an automatic device Q capable of assuming
some finite number of different states q^, q2, ..., qn and of moving
to the right and to the left along a tape extending to infinity in both
directions and divided into separate cells. One of the finite set of
symbols s1, s2, ..., sn may be written into each cell of the tape. The
automatic device Q Is provided with a reader capable of perceiving
these symbols and a writing element capable of writing any of these
symbols into a scanned cell.

The machine Q is a strictly determined device: its behavior at
each Instance is determined by the pair of symbols (q., m.), l.e., by * J
the state of the machine q^ at the given instant and by the symbol m^
being read. The machine Is capable of scanning Just one cell of the
tape at each instant). For each such pair (q^, m^) the following opera­
tions of the machine Q are defined: it writes a new symbol m. into the Ji
scanned tape cell (replacing the previous symbol mp, moves along the
tape to the right or to the left by one cell, and goes over to the new
state Qjj* After all of these operations have been performed, the pro­
cess recommences. Letting d1 represent the shift to the right and a2 a
shift to the left, we note that the behavior of the Turing machine Is
determined completely by the initial content of the tape (initial infor­
mation) and by the program for the machine, which consists of a finite
number of ordered quintuplets q^m^m^ d^q^j, where the q^ and m^ inde­
pendently run through the set of all machine states and, corresponding­
ly, the set of all symbols.

In mathematical logic, there is a postulate stating that any trans-
39 -

formation of alphanumeric Information performed In accordance with a
finite system of exact rules (of any nature) may be accomplished by
some Turing machine constructed specially for this purpose.

Let us now have an automatic data processer with program control
(for example, an automatic digital computer). It is natural to call
such a processer universal if by changing the program by which it oper­
ates we can simulate on it the operation of any Turing machine. In vir­
tue of what we have Just said, such a general-purpose processer may be
used to transform alphanumeric Information in accordance with any sys­
tem of exactly formulated rules (algorithms).

It turns out that it is sufficient to introduce into the operation
set of the automatic digital computer a very small number of fundamen­
tal operations in order to convert it to a universal information pro­
cesser or, as we ordinarily say, a general-purpose computer. These are
operations with peripheral equipment (including external storage), as
well as conditional-Jump and readdressing (addition of instructions)
operations, and transfers from one storage location into any other
storage location (this last operation is usually realized in three-ad­
dress machines as a special case of the addition operation, namely addi­
tion to zero).

We should at once note that, strictly speaking, for a machine to
be universal it would have to have an infinite memory capacity. At the
same time, it is well known that high-speed storage volume in modern
computers is not only not infinite, but actually extremely limited. The
situation is saved by the fact that external storage with present-day
computers is nearly unlimited, and can be used at any time to make up
for the limited amount of high-speed storage.

We agree to call the operation set of an automatic digital compu­
ter algorithmically complete if it ensures simulation of any Turing

- 40 -

machine. We say that a computer A Is universal if, first, its operation
set is algorithmically complete and, second, it has a high-speed stor­
age capacity adequate to contain the universal simulation program that
enables our machine to simulate the operation of any Turing machine as
soon as the program for the latter is written into the high-speed or
external memory of computer A.

For simplicity, we shall assume that our machine has three exter­
nal storage units (VZU-1, VZU-2, VZU-3), which contain, respectively,
the operating program for the simulated Turing machine (in the form of
a set of quintuplets of symbols similar to those discussed above), the
state of this machine at the given time, and the contents of its tape.

Let us now dlscrlbe the universal simulating program in general
terms. The basic difficulty lies in the fact that both the number of
states of the simulated Turing machine and the number of different sym­
bols on its tape may be so large that they cannot be represented by
words of the length used for the numbers with which the simulating com­
puter A works. In this case, each state q^ of the Turing machine will
be represented by a series of numbers. It is desirable to store these
numbers in successive even locations of the VZU, while the odd locations
are used for auxiliary Indices indicating the basic numbers by some
method or another. Morover, it is necessary to use different numbers to
represent the states (q^), symbols (mj)> and nature of tape motion (dk);
special numbers must also be used to represent the beginning and end
of the sequences of numbers representing q^ and m^.

Then the universal simulation program will contain one following
basic segments. The first segment, controlling the sequential selection
(with interval 2) of numbers from VZU-1 will compare the numbers and in
case of a disagreement will Jump to the beginning of VZU-2 and to the
beginning of the next sequence for q^ in VZU-1. The second program seg-

- 41 -

ment begins to run after complete agreement has been established between
the sequence q contained in VZU-2 and one of the sequences q^ in VZU-1.
It selects and compares sequences of numbers from VZU-3 (the scanned
symbol m) and VZU-1 (the symbol m^ of the Turing-machine program follow­
ing the selected state qi).

When the sequences are not the same, control again Jumps to the
first segment, while where they are the same, the next segments begin
to run; they write into the VZU-3 the new symbol m^ from the selected
quaduplet of symbols from the program in VZU-1, write the new state
qij(from the same quadruplet) into VZU-2, and readdress the instructions

pertaining to VZU-3 for the beginning of the following or preceding se­
quence .

It is easy to see that all of these segments may be realized in the
following instructions of the "Kiev" computer: MBP, MBZ, MBCh, addition
of Instructions, and exact comparison (while where punched tape is used
for one of the VZU, the instructions "load instructions" and "readout"
as well). The entire universal simulation program will consist of doz­
ens of instructions and, in any case, can be stored in the OZU of the
"Kiev" computer.

Thus, according to the definition adopted above, the "Kiev" may be
considered to be a universal computer. The algorithmic completeness of
its operation system is ensured by the operations with peripheral equip­
ment (including external storage), addition of instructions, and exact
comparison. Where part of the program for the simulated Turing machine
is stored in OZU, we must add to these operations the operation of num­
ber transfer from one location to any other location (in the "Kiev"
computer, such an operation may be accomplished either with the aid of
the F operation, or by addition with zero). Where the universal simula­
tion program is stored in the PZU, we must add to the operations ensur-

- 42 -

ing algorithmic completeness the F operation as well. All remaining op­
erations of the “Kiev” computer are superfluous from the strictly al­
gorithmic viewpoint. There purpose is mainly to simplify programming
and increase the effective speed of the machine.

We note that it is not absolutely necessary to include the exact-
comparison operation in the fundamental operations ensuring algorithmic
completeness of the operation set; this operation may be replaced, for
example, by the ordinary comparison operation (Sr. 1) which is then
used to compare the given pair of numbers twice (in regular and reverse
order).

Further Justification for the choice of operation system for the
"Kiev" computei’ can be given only in the form of illustrations demon­
strating the increase in effective computer speed owing to the presence
of the given operation in frequently encountered standard routines.
This sort of analysis went on throughout the entire period of work on
the "Kiev" machine. As a result, numerous changes were made in the op­
eration set in order to Improve it, so that the final set, described
below, was adopted only in 1959. Unfortunately, during this improvement
process, it was necessary to reckon with the fact that the fundamental
computer units had already been Installed, so that we could only use
those improvements not involving significant circuit modification. For
this reason, the final operation set does not completely satisfy the
mathematicians working on the machine. Most of the current suggestions
for Improving the operation set will be carried out at the next moderni­
zation of the computer.

Example 1. Computation of the scalar product of two vectors
4- 4- ... + onbn.

Four instructions are sufficient to solve this problem on the
"Kiev" machine: NGO, x, 4-, and OGO. Here the NGO instructlkn will be ex-

- 43 -

ecuted Just once, and the remaining instructions n times each. Thus,
the total number of operations needed to compute the scalar product of
two n-dimensional vectors will be 3n + 1 for the "Kiev" machine. In the
absence of the NGO and OGO operations, 4n operations would be required
(in addition to multiplication and addition in each computation cycle,
it would also be necessary to use the instruction-addition operation
and comparisons).

Example 2. We are required to execute a certain set of operations
0 on a group of numbers whose first address is not known in advance and
which is obtained only in the course of problem solution. With the aid
of the operation set of the "Kiev" computer, such a problem is easily
solved owing to the possibility of setting the address-modification
register on the basis of the specifier (it is possible that it will al­
so be necessary to employ a logical shift if the first address of the
group does not appear in the digit positions that are transferred into
the modification register by the F operation). In the absence of the F
operation, solution of this problem would require formation of the NGO
instruction with the aid of the instruction-addition and shift opera­
tions, while in the absence of the modification register, it would be
necessary to readdress all the instructions of set 0 during each loop.

Manu­
script
Page
No.

[Footnotes]

36 Another approach to the nature of
tween external memory and OZU has

interchange of codes be-
been developed in [1].

- 44 -

Chapter 3
ADDRESS PROGRAMMING AND THE "Kiev" ELECTRONIC COMPUTER

THE ADDRESS LANGUAGE
In the rest of the discussion in this book, we shall use an algor­

ithm language introduced for formal description of algorithms, and
called the address language.

The address language is a universal algorithm language very simi­
lar, on the one hand, to the generally adopted language of formulas and,
on the other hand, to machine languages on the whole; as a result, al­
gorithms in this language may be considered to be programs for general-
purpose machines. The similarity of the address language and machine­
code languages is explained by the fact that it reflects the fundamental
algorithmic principles realized in present-day universal computers: the
principle of program control and the addressing principle.

The translation of algorithms from the general formal language to
the language of a concrete machine may be automated (using the same
computer) by creating appropriate translator programs PP.

The idea of creating such a language appeared as a result of the
work of the seminar in the theory of algorithms (1957-1958), which
worked under the guidance of V.M. Glushkov, L.A. Kaluzhnin, V.S. Korol-
yuk, and Ye.L. Yushchenko.

The work on creation of the language itself was first carried out
Jointly by V.S. Korolyuk and Ye.L. Yushchenko [10]. Later Ye.L. Yushchen­
ko [15] made substantial improvements in the language, some of which
were discussed in the Joint publication by B.V. Gnedenko, V.S. Korolyuk,

- 45 -

and Ye.L. Yushchenko [5]. In this book, we discussed the language In
the form in which it was proposed by Ye.L. Yushchenko at the end of
1959> with slight modifications.

The work toward creation of the address language had its influence
on the selection of operations for the "Kiev" machine. Here we should
mention first of all F operation, included at the suggestion of Ye.L.
Yushchenko, and, to some extent, the NGO and OGO operations, which were
developed with the participation of V.S. Korolyuk [9], in addition to
Ye.L. Yushchenko.

The hardware realization of all these operations was carried out
under the guidance of L.N. Dashevskiy and Ye.A. Shkabara. Ye.L. Yush­
chenko further suggested that conditional control transfers carried out
on the basis of the address of higher rank and, finally, that relative
control transfers be used, making it possible to store subroutines in
arbitrary memory areas without changing the way in which they are writ­
ten. The hardware implementation of this last proposal will be realized
in the near future.

The address language contains all symbols used in mathematics to
represent variables, vectors, functions, sets, and symbols for mathe­
matical operations. The system of concepts (and symbols) of the address
language contains special concepts (and corresponding symbols), however,
owing to which it is better suited to the description of algorithms.
The address language is the ordinary symbolic language of mathematics
(whose alphabet contains a finite number of signs), supplemented by
special concepts and symbols.

Lines. An address algorithm consists of lines. Each line contains
one or several algorithmic operations. The representation of each oper­
ation is called a formula; all admissible formulas will be described
below. The formulas in a line (if there are several of them) are separ-

46 -

ated by the symbol (semicolon), or the symbol (comma). The first
of these indicates that it is not permissible to interchange the formu­
las in a line, while the second Indicates that this is permissible.
Lines are separated from one another by the fact that they are written
one above the other (in coding for the computer, a (period) may be
used as a separating symbol.

The prime operation and address mapping. The prime operation de­
fines some function of a single variable. Its symbol (a prime) is writ­
ten above and to the left of the argument

'a = b,

where a is the argument and b the result of the operation.
We read this as follows: prime a equals b (or b is the content

of a). The • (prime) function defines a certain mapping of the set of
addresses A onto the set of contents B, which we shall call the address
mapping.

The mapping of set A onto set B must be single-valued (to one ad­
dress there must correspond Just one content). The inverse mapping may
be one-many. No more precise meaning should be read into the prime oper­
ation .

In abstract discussions, no restrictions are imposed on the sets
A and B, l.e., the prime function may be defined on an arbitrary set of
arguments A, and will have values in an arbitrary finite set B. For
purposes of applications, however, both sets are restricted, and are
sets consisting of certain codes.

To represent the members of the address set, we use the letters of
some initial (finite) alphabet with or without Indices, the positive in­
tegers, as well as words formed from the letters of the initial alpha­
bet and digits. As such an initial alphabet, we might take a combination
of the upper- and lower-case Latin, Russian, and Greek alphabets. Then

- 47 -

to represent addresses we might use, for example, the notation:
1012, a.3, sum, sum 2, cd.

If xeA, then the expression ’x is meaningless. We shall assume
that the prime operation is applicable to those elements that are used
as Its arguments.

The repeated application of the prime operation leads to the con­
cept of an address of rank two. Thus, if ’a^ = a2 and a^eA, i.e., is
itself an address, there is a d such that ’a2 = d. This relationship
is represented symbolically as

’fli = '('fli) - *ai = 'fl» d-

In this case we say: a.^ is an address of rank two or the specificier
by d.

In like manner, we can Introduce the concept of addresses of high­
er rank. Thus, the notation

*a — d

indicates that there are elements x1; x2; x$ € A such that ’a = x^;
’X1 = x2; ’x2 = X3J ’x3 = _

*a — ’Xj = *xa = 'x, =-- d.

We agree to call d the address of rank zero for the quantity d.
Address functions. The generally accepted concept of a function

and the corresponding expression constructed from symbols for one-term
and two-term operations, parentheses, and symbols for variables are
expanded; we include the prime function as one of the admissible ele­
mentary operations. Such functions are said to be address functions.

In writing address functions, we assume that all symbols are em­
ployed in regular manner. Thus, any function whose expression contains
no prime-function symbol will be a special case of an address function.

In the language, expressions for address functions are used to In­
dicate dependent algorithmic operations (formulas or flags for uncondl-

- 48 -

tional jumps), as well as to construct representations for other algor­
ithmic operations (transfer, Interchange, predicate, entrance, relative­
jump, and looping formulas). If we are given the mapping defining a
prime operation, then for any address function we can find its value.

An address function may be written formally, however, i.e., with­
out preliminary specification of the mapping of set A onto set B, de­
fining the meaning of the prime operation. In this case, the address
function symbolizes operations on the as-yet unknown content of ex­
pressions entering into it by way of the ’ symbol. If we now specify a
mapping defining the prime operation (where set A includes all symbols
contained in the functions to which this symbol applies), the function
will acquire some particular meaning.

Transfer operation. To define and modify an address mapping, we
employ a transfer operation, whose symbol is => (an arrow connecting
two elements). The operation expression d=)a (d transferred according
to address a) means that:

1) element a is contained in address set A;
2) element d is included in content set B;
3) the relationship 'a = d is established;
4) all previously established rela .ionships of the form *x = y,

where x / d, remain unchanged.
Thus after the transfer d=)a , there will be a change in the value

2 of all address functions containing the expressions ’a, a, a, etc.,
while all address functions not containing these expressions will re­
main unchanged.

Labels. A label may be a number, letter, or word made up of num­
bers and letters with or without indices.

Labels may be values of address functions. Thus labels are consid­
ered to be a special case of an address function whose value is con-

- 49 -

stant and which is a label.
Labeled lines. In order to Indicate the order of application of

algorithm lines, various of the lines may be marked off by one or sever­
al (different) labels. In this case, the label followed by the symbol
"...” (ellipsis) is placed to the left of the labeled line. An ellipsis
in the representation of an algorithm always means that to the left of
it there is a label, marking off a given line. The corresponding lines
of the algorithm are said to be labeled.

Let us now list the admissible algorithmic operations and describe
the language formulas corresponding to them.

Computable-transfer formulas. The representation of an address
function whose values may be labels (in the special case, simply a
label) may represent an individual algorithmic operation called a com-
puted-transfer formula. Such an algorithmic operation consists in pro­
ceeding to execute the algorithm line indicated by the label equal to
the value of this address function calculated for a given address map­
ping.

For the special case in which the address function is simply a
label, the formula is called an unconditional-jump lable. Thus, a label
(not followed by an alllpsis) may form a separate line of the algor­
ithm and in this case the operation designated by it consists in Jump­
ing to the line indicate^ by the same label.

The execution of a computed-Jump formula (or unconditional-Jump
label) does not change the address mapping.

Stop formulas. The two special symbols g and ! are used; they are
called, respectively, relative- and unconditional-stop formulas. The
employment of the q symbol is associated with entrance formulas; the !
symbol indicates an operation — the end of an algorithm. The 8 can also
represent the end of an algorithm provided it has not been preceded by

- 50 -

the corresponding entrance formula.
The stop formulas either form separate lines of the algorithm, or

occur as components of other formulas In the address language.(see pred­
icate, entrance, looping, and substitution formulas).

Relative-jump formula. Expressions of the form
IN

may form separate lines of the algorithm; they are called relative-jump
formulas. Here N is an address function whose values are positive or
negative Integers cr simply nonzero integers; ! is a special symbol.

A relative-jump formula is a representation of the following al­
gorithmic operation: a transfer is made to the line located above or
below the given line by a number of lines equal to the value of N, cal­
culated for the given address mapping: the Jump is downward if the val­
ue is positive and upward where it is negative.

Transfer formulas. Expressions of the form
A=>/»

may form separate lines of the algorithm; they are called transfer form­
ulas. Here f^ and fg are address functions.

A transfer formula symbolizes the following algorithmic operation:
the value of the address function f1 is transferred according to an ad­
dress equal to the value of the function fg. Thus, execution of a trans­
fer formula changes the address mapping and thus the value of several
address functions. Here it is understood that all of what we have said
In defining the transfer operation applies to the values of the func­
tions f-^ and fg. We should note that the definition of transfer formula
should be taken in the sense that ’fg will equal the value of f.^ prior
to the transfer after the transfer formula has been executed. This is

2 important where the expression f.^ contains ’fg, fg, etc.
It is also permissible to write address formulas in the form

51 -

0=>a.
where 0 represents the ’’empty” symbol (a position for placing the ac­
tual parameters). Here It Is assumed that at the Instant the call to
the address formula containing an "empty" left side is made, the algor­
ithm will specify which symbol should be located in this position.

Interchange formula. Expressions of the form

may form separate lines of the algorithm; they are called interchange
formulas. Here f^ and f2 are address functions. An interchange formula
represents the following algorithmic operation: for a given address map­
ping, the values of the address functions f1 and f2 are computed; they
are taken as addresses. The operation consists In interchanging the con­
tents of these addresses (the latter must be specified at the time the
operation is executed). The contents of the remaining addresses remain
unchanged. Thus, the formula

ac

(where a and £ are addresses) represents an operation equivalent to
operations represented with the aid of a sequence of three transfer
formulas:

'«=)/■
'c —)a
•r =)c

In the general case, where f^ and f2 are arbitrary address func­
tions, this operation is equivalent to the following four transfer for­
mulas executed in sequence:

a=) r
=») rt

a =) c

Here r and r-^ are addresses that are free for the given algorithm
(working addresses).

52 -

List of formulas. In one line of the logarithm, we may write sever­
al transfer or Interchange formulas. In this case, we must place be­
tween them one of the following symbols: (semicolon) or (comma).
The first of these symbols Indicates that It Is not admissible to change
the order of execution of the operations separated by It, while the
second Indicates that It Is possible to Interchange these operations or
to execute them simultaneously. Such a line is called a formula list,
and indicates that all of the operations enumerated in it are to be ex­
ecuted with the specified indications as to the order of execution.

List of formulas with Jump. At the end of a list of transfer or
interchange formulas given in a single line (or following one such form­
ula), after the symbol there may be one of the formulas for a calcu­
lated or relative Jump. Such a line is called a formula list with a
Jump and, as in the proceeding case, indicates execution of all the
operations which it enumerates, the last being a Jump.

Entrance and subroutine ^urmulas. Entrance formulas are used to
represent a given transformation, which for some reason cannot be
written out at the given location. Such a transformation is called a
subroutine and it is assumed that it is dlscrlbed in some manner or
other (not necessarily In the address language). It is necessary, how­
ever, that the description of the subroutine specify:

1) an ordered list of input and output parameters;
2) the Instant at which calculations are concluded;
3) the label assigned to the given subroutine (its name).
Such parameters include, in addition to information on arguments,

sizes of blocks, etc., the labels for those subroutines whose use is
to be determined by the main program. Thus, for exanple, if the sub­
routine is a procedure for computing a definite integral in accordance
with a particular scheme then, in addition to the limits of Integration,

53 -

the interval, etc., the input data must include specification of the
label for the subroutine used to compute the values of the Integrand.

Subroutines may be written in the address language. In this case,
the requirements for the representations are as follows:

1) the Initial (entrance) line of the subroutine is indicated by
a label which serves as its name;

2) the initial line of the subroutine consists of address formulas
with ’’empty” left sides (in the course of execution of the subroutine,
they will be replaced by elements of the list on the basis of the en­
trance formula). The order of execution of these formulas plays no role,
but their representation is ordered and agrees with the list of the en­
trance formula;

3) at least one a symbol is to be used in the subroutine.
The formula for entering a subroutine into an algorithm is

n*\<h.a„)P.
where II is the symbol for an entrance formula; a is the formula (or la­
bel) of a computed Jump; P is the formula (or label) fbr a computed or
relative Jump or one of the stop formulas; a1# ..., an is the list of
address functions.

The formula means:
a) go to the subroutine with label a (or equal to the value a);
b) the first expressions of the list a1# ..., an are assumed to be

an ordered list of the subroutine arguments;
c) executing the subroutine, transfer the ordered list of results

into the remaining addresses of list a1# ..., a of formulas of n. Thus
the number of terms in this list must equal the sum of the number of in­
put and output parameters for the given subroutine;

d) go to the algorithm line with label P (or equal to the value of

0).
- 54 -

For a subroutine given In the address language, an entrance formu­
la Indicates a Jump to the line with label a, Insertion (maintaining
the sequence) of the list of address expressions a1, ..., an at places
indicated by 0 symbols in the left sides of the formulas of the first
subroutine line, and replacement of the fl symbol by label £ (all substi­
tutions are made not while the algorithm is being written, but only In
the course of its execution).

A relationship Is established between entrance formulas and stop
formulas, resembling the relationship between initial and terminal par­
entheses In algebraic formulas.

A subroutine is said to be the domain of operation of an entrance
formula.

Predicate formulas. Let L represent a certain statement. Expres­
sions of the form

P{LI«IP
may form separate lines of an algorithm; they are called predicate form­
ulas, where P Is the predicate-formula symbol; I is a separating symbol;

a and P are the upper and lower values of the predicate formula and
each of them may be one of the previously described lines.

The algorithmic operation corresponding to a predicate formula
consists In execution of the line representing the upper value if the
corresponding statement is true and of the line representing the lower
value if It is false.

If the value of L Is always true, then In place of a predicate
formula we may write the upper value, while if it is always false, we
may write the lower value. In this sense, any of the lines presented
earlier will be a special case of a predicate formula.

If one of the values of a predicate formula is the label for a
following line, the latter may be omitted (together with the I symbol

55 -

for the lower value).
We note that we can write out any algorithm using Just the ! halt

formula, transfer formulas, and the special predicate-formula case
where the values are labels. All the remaining formulas are introduced
for the sake of convenience.

Substitution formulas. Expressions of the form
..........P

are said to be substitution formulas, where Z is the formula symbol;
a, 0 are formulas for computed or relative Jumps or simply labels;
a, ..., a -* c is the list of substitutions,lx n n

The algorithmic operation represented by a substitution formula
consists In the following:

a) for a given address mapping, labels are determined — values of
the formulas a and 0; the lines of the algorithm between these labels
define the domain of operation of the substitution formula;

b) the lines of the algorithm corresponding to the domain of oper­
ation of the substitution formula are executed; in the course of execu­
tion, the symbols c.^ corresponding to the symbols ai are replaced in
these formulas;

c) the machine may exit from the domain of operation of the substi­
tution formula owing to its exhaustion (it will go to the next line of
the algorithm) or owing to the operation of some Jump formula; in
either case, when the domain of operation is left, the initial represen­
tation of the algorithm will be restored in it.

If a is the label for the line following the substitution formula,
it may be omitted in the representation of the substitution formula.
In this case, the formula will take on the form

3 (flj “* • • •» "* Cfi)• P*

If the domain of operation of the substitution formula consists of
- 56 -

the single line following it, then both formulas a and P are dropped in
the representation of the formula.

Substitution formulas permit us to employ still another convenient
representation for subroutines. Here Instead of the line of transfer
formulas with ’’empty” left side (see entrance formula) the subroutine
begins with a substitution formula, whose substitution list contains
the same symbol 0 in place of the left sides.

Subroutines with a first line consisting of address formulas shall
be called subroutines with transfer. Their representation remains un­
changed even while the subroutine is being run. Subroutines whose first
line contains a substitution formula shall be called subroutines with
substitution (with readdressing). Their representation will change
while they are being run, since in this case one symbol is replaced by
another. After running, the representation is restored. Mixed subrou­
tines are admissible.

Loop formula. In finite ordered sets, the concept of the succes­
sion operation is Introduced. The symbol C represents "next.” In each
concrete case, the succession operation is given in some manner. With­
out imposing any restrictions on the succession operation, we shall re­
quire that its application to any element of a set yield (and uniquely)
the next element.

An information element is said to be scanned by an algorithm if
the representation of the algorithm contains an address for it in some
rank. Algorithms including in their representation the addresses In
some rank for these Information elements are called information-element
scanning schemes.

It is natural that in the general case a successor operation can­
not be established directly in the set of initial-information elements.
The successor operation for the initial-information elements. The suc-

- 57 -

cessor operation for the initial-information elements may be establish­
ed with the aid of a prime-operation with respect to the successor oper­
ation in the address set. We shall ass,ume that we are free to select
the address set as we wish. The task of programming consists in con­
structing schemes for surveying blocks with the aid of the successor
operation In their address blocks.

We write an ordered set in the form
{a. C0.P|L}).

where a is the first element; C is the succession operation (we may in­
sert any element of the set in place of the symbol 0); Lis the condi­
tion requiring that an element belong to the set.

We shall assume that in some algorithm we are required to execute
the F operation successively on all elements of the set (a, Ct?, P (£}}

and go to the line with label The address program for such an algor­
ithm may be written In the form

0('«)
C'k=->*
K

To shorten the representation of such schemes, we Introduce the
concept of loop formulas on the address 7r

Ula, C0, P (£’=)«) «, /

or a loop formula on a parameter 7r

U{a, C0, PIL) /
0 («),

where U Is the formula symbol, a is the label for the next line of
transformation F.

We Introduce the concept of the domain of operation of the loop
formula. The domain of operation of a concrete loop formula Includes
the lines of the algorithm between the formula and the line with

- 58 -

label a* The domain of operation of a loop formula contains another
loop, substitution, or entrance formula, the domain of operation for
the latter will be contained in the domain of operation of the first.

A line with a loop formula may be labeled, and it may be transfer­
red to other lines of the algorithm. It is established that if a Jump
to a loop formula occurs from outside its domain of operation, scanning
of the elements begins with the first; if, however, the transfer takes
place from within the domain of operation, scanning is continued.

For sets with a succession operation defined by relationship
C0-0-H the notation ,

l(a(b)P(L)} or (a(b)c),
where c is the last element of the set.

In this case, the loop formulas will have the form
U (a (b) P (£)=>«)

or
lf(a(b)c -**} etc.

If the domain of operation of a loop formula consists of a single
line or coincides with the domain of operation of a loop formula written
in the following line, the label a is omitted

p.

If 0 Is the label for the line following directly after the domain of
operation of this formula, it may also be omitted

#(...)« or U(...I.
A loop formula may provide for simultaneous scanning of several

sets, for example,
{Oj (ftj) Cj -*■ ot (bt) ca =) itg)«, p.

In this case, scanning continues as long as all of the specified mem­
bership conditions remain valid, and Just one of them may be indicated
in the formula.

- 59 -

Looping is also permitted on the basis of a single address in the
set, where one succession operation is specified for the initial group
of elements, another for the next group, etc. As an example,

*} #> p.
Formal definition of address algorithm. An address algorithm con­

sists of the initial address mapping and a finite number of lines
written one on the other, and an indication of the address set for the
resulting mapping. Each line may contain one formula of the following
types: computed Jump (or unconditional-Jump label); stop; relative
Jump (or relative-Jump label); transfer; Interchange; entrance; predi­
cate; substitution; loop; and also lists of formulas or formulas with
Jumps. Any line of the algorithm may be labeled.

The initial address mapping is specified in the form of a sequence
of equations

'a = b,

where a is the address and b the content.
The resultant address mapping is given by listing the addresses

whose contents will be the solution of the problem following completion
of running of the algorithm.

The sequence of algorithm execution is governmed by the following
rules:

1. The line specified by a specially indicated initial label is
executed first. If there is no such indication, the line occurring
first in the representation is executed first.

2. The order of execution of lines containing formula lists Is
specified when they are declared.

3. Formulas for computed and relative Jumps, lists of formulas 4
with a Jump, entrance, substitution, and loop formulas, as well as pred­
icate formulas whose values contain Jump formulas are indicated by a

60 -

successor line.
4. After execution of the line that does not indicate its successor,

we go to the next line in the representation.
5. The formula for an unconditional stop! or the formula for a

relative stop 9, corresponding to no entrance formula represents the
end of algorithm operation.

From the viewpoint of content, an address algorithm Is a certain
manipulation of information on the problem that produces its solution.
This manipulation, In form, is the establishment and variation of some
address mapping.

Information on the problem is specified by a certain address map­
ping. In many cases, therefore, the algorithm begins with the establish­
ment of a certain initial address mapping by means of several transfers
or a table for such a mapping.

The result obtained by running an algorithm is the content of the
addresses Indicated as the resultant set.
ADDRESS-LANGUAGE LEVELS AND STYLES

The address language, although based on the addressing principle,
Imposes no requirements on the order of the address set. An address
mapping may be defined on an arbitrary address set. For problems whose
nature involves the order of the elements we may introduce succession
operations not even described algorithmically. For problems whose na­
ture involves ordlng of the elements, we may introduce succession op­
erations not even described algorithmically. The level of ordering of
the addresses, the level of the algorithmization of the succession op­
erations introduced in a certain sense is the level of the language.

It is necessary to consider three fundamental levels of the ad­
dress language [15, 18]:

1. The general algorithmic level, at which the set of addresses
- 61 -

most natural for the given concrete problem is used, and the succession
operations are described by general mathematical means, for example,
with the aid of indices. At this level, the address language is very
similar to Algol [13].

2. The level of arbitrary (or symbolic) addresses, which requires
ordering of the addresses of the elements making up the blocks process­
ed by the algorithm. At this* level we consider the linearity and bound­
edness of the set of addresses, which match the technical potential of
the computers; as a rule, unless otherwise specified, we speak of a
language at the level of symbolic addresses.

3. The level of absolute addresses, which assumes that the address
set is completely ordered in association with a particular machine,
with allowance for the set of absolute location addresses and their
ranking.

Provision has been made in the address language itself for going
from level to level, from the most abstract algorithmic language to
the level of complete allocation of addresses for a given computer.
This is the reason for the particular suitability of the address lan­
guage as the source language for translator programs. Separate levels
may serve as intermediate internal languages for translators [PP] for
the purpose of translating the algorithm as written into a computer
program in steps, through intermediate representation.

The free utilization of the representational abilities of the
language permits us to describe the same algorithm by different methods.
To simplify translation from the free address language into the lan­
guage of an actual computer, we may define the styles of the language.

The style of the language imposes restrictions on the use of its
expressive abilities such that translation into the language of the
given computer will be simpler. Translation from the general language

62 -

into a particular style of the language is possible at any level. The
task of a PP is to translate from the general address language. This
translation may be divided into stages, however, by the introduction of
a a series of styles approaching ever closer to the machine language.
Thus the work of the PP is reduced fundamentally, to formal transforma­
tions within the address language, to translation from style to style.

Depending on how complex a PP we are able to realize, the breadth
and flexibility of the address language permits us to select a point
before which the problem program must be written manually so that the
rest of its processing may be carried out by the PP. Owing to this, to­
day it is possible in practice to automate the programming of certain
program segments. Thus the introduction of a PP with the address ad­
dress language as source for the "Kiev" computer — the PP-AK (see be­
low), as well as PP using the same source language for other computers
(the "Ural” and the UMShN, the broad-function control computer, and
others) has made it possible to increase programmer productivity by
many times. Owing to the generality of the source languages, the exis­
tence of these PP makes It possible, where needed, to transfer problem
solution from one computer to another with no special difficulties,
as well as to expand the group of people able to write programs (in the
address language) for computers to include those concerned with direct
algorithmization of various information-handling processes and even to
those in total Ignorance of machine codes. This last factor must be con­
sidered especially important in view of the Increasing needs for per­
sonnel caused by the increase in the number of computers in use and
their operating speed.

Thus work ordinarily performed by a skilled programmer can be di­
vided into too essentially different segments. Work on the refinement
and writing of algorithms, which requires a high degree of’ mathematical

- 63 -

skill, will be performed by programmer engineers. The result of this
work will be an address program. Work on the translation of the latter
into machine language is carried out by translator programs. Coding of
address programs (and sometimes, translation into the required style as
well) together with work at the computer is performed by moderately
skilled operators. The prospective introduction of automatic reading
devices promises to minimize this work.
EXAMPLE OF ADDRESS-PROGRAM WRITING

Let us write an algorithm for solving a system of linear algebraic
equations with a symmetric coefficient matrix using the improved Gauss
method [14].

Let A = (a,/) (i, /=!, 2....n,alj = aj,) be the initial matrix and Ff a,i, n+1
the vector for the right sides.

In accordance with the method selected, the algorithm is split in­
to two stages — direct stage and Inverse stage.
Direct and inverse stages

Direct stage. The elements a^ are transformed directly, line-by-
line, by means of the recursion formulas:

Inverse stage — solution of the system of equations with the tri­
angular matrix {aj} (< = 1, 2, n\ x </< n + i>, yielded by the direct stage.

The calculation formulas have the form

_____1^1*1----((ft. a — I........... I).
UH

1. Writing of programs at the general-algorithmic level. We take
as the initial mapping

64 -

‘an = a,j(i = 1, 2...........n; 1 < / < n 4- 1).

Let the be the addresses set aside for the components of the
vector for the solutions x^(i =1, 2, ..., n). Let the elements

<i <n; i<i<n +1) be calculated from left to right, line-by-line.
Then it is not difficult to see that the newly obtained elements a
may be matched to the same addresses .
Forward-stage algorithm

Initial address
mapping

Address algor­
ithm 1

FORWARD STAGE...
H{2(l)/ia

4- I ->/|
ait------r—— a.,.

The resultant address set coincides with the initial set.
Inverse-stage algorithm

Initial address Address algor-
mapping ithm 2
«= alf INVERSE STAGE. . .

~ L 2 M 4- I) 4 I'H— 0 I -* »} Al, fl
®r- » + <
//{< 4- 1(1)// ->//)
s, —

M ...'s, :'a,,=)s,

The resultant address set Is
s(i — 1, 2...........n).

2. To go to the symbolic-address level, it is necessary to declare
the successor operations algorithmically for the address set; in the
programs for the direct and Inverse stages, these have declared with
the aid of Indices. In our case, this reduces to constructing an algor­
ithm for determining, in the linearly ordered address set, the address
of a matrix element on the basis of its assigned indices.

The algorithm used to find the address of an element from its in­

- 65 -

dices will be determined by the method used to code the Initial Informa­
tion.

The presence of a scheme for information processing and a symmetric
initial matrix naturally raises the notion of sequentially coding, col­
umn- by-column or row-by-row, only those matrix elements for which j > 1.
To be specific, we shall assume that we code column-by-column. As an ex­
ample, for n « 4 the following scheme for allocating addresses to the
initial Information suggests itself:

The ordinal number of an information element a.. in the sequence

a 4- 1, « + 2, » + 4-n

Is called its reduced index tt(1, j).
It is not difficult to see that

i—I

«(4 /)«i + 2
■>i

So that the programs will not depend on the parameters n (matrix
dimension) and a(beginning of block In which elements are stored), we
also let

'a — n; ~ ®.

66 -

Forward-stage program
Initial address

mapping

'a = n
'<? = «
'(« 4- i 4- y (/ — !)) = a,/
(1 < i i <n; i < / < n 4-1)

Address algor­
ithm 3

FORWARD STAGE...

The resultant address set coincides with the original set.
To make it possible to obtain the result for the inverse-stage

program — the solution vector — in an arbitrary address block, we in­
troduce the address V'

= s.

Inverse-stage program
Initial address Resultant address

mapping set
*9 = a s4-i(«-0, 1. 2...........zi)
'a — n
7a4-» 4- ^-(/—D) =

(1 < i < n; i <i < n 4- 0

Address algorithm
INVERSE STAGE...

//{'?(— 1) 1 -><} M. a
('? 4- i 4- — '?) ==> '4* 4- i

U [i 4- 1 (!)'<?-> *}
'('4» 4- 0 -'('<? 4- i 4- y (k - I))' W + k) =>'•!> 4- i

Each of the algorithms given may be set up as a subroutine. This
makes sense since, for example, an inverse-stage program may be used to
solve a system of linear equations in the general case using the method
of elimination, etc.

With the method which we are using to code problem information,
to obtain subroutines we need only first add to the indicated programs
the corresponding lines, to which initial labels have been annexed:

FORWARD STAGE... 0=)9
INVERSE STAGE... 0=)<?, 0=)^

The entrance formulas to these subroutines will have the form
n FORWARD STAGE (a)
n INVERSE STAGE (a, 3}

We repeat that the representation of the entrance formulas as well
as the representation of the algorithms agree with the information-
coding method.
ADDRESS ALGORITHMS AND MATHEMATICAL MACHINES

From the mathematical viewpoint, present-day general-purpose digi­
tal computers are based on two principles: addressing and program con­
trol . *

Under the addressing principle, representation of algorithmic oper­
ations in machine language is accomplished by specifying the addresses
at which the elements of transformed information are to be stored. Un­
der the program-control principle, in the solution of each concrete
problem, computer operation is controlled directly by the solution al­
gorithm, represented in the language of the given computer as a special
program.

The address representation of algorithms represents these princi­
ples of addressing and program control, which are common for all modern
computers. On the other hand, any algorithm is described by a finite
number of operations. As a consequence, it is in principle possible to

- 68 -

construct an IAVM (ideal address computer) for which a given address al­
gorithm, as for all algorithms formed from the same operations and using
the same addresses, will be a program [17]. To this end, we must include
in the computer’s elementary-operation set all operations encountered
in the algorithm, and we must use an instruction-coding system corres­
ponding to the address representation.

Actual general-purpose computers differ from an IAVM not only in
having restricted memories, but also in that there elementary-operation
set is restricted to a certain number of operations, even though it
may be complete, l.e., it permits construction of any algorithmic oper­
ation (by successive application of elementary operations).

For the sake of simplicity, we use as addresses for various compu­
ters the initial segment of the natural-number series; the length of
this segment will characterize the capacity of the computer high-speed
memory. But the program registers occupy an important place in the set
of locations used to store information in a computer. To permit des­
cription of operations involving these registers, the latter must be
assigned address names other than the numerical addresses of ZU loca­
tions if we wish to avoid confusion. We note that in computer codes,
indications of the use of program registers are either Included in the
operation code, or else they are coded into specially allocated digit
positions in conjunction with the operation code.

Simulation of the operation of any actual computer on an IAVM re­
duces to selecting from its elementary operation only those contained
in the operation set of the given real computer. The language thus gen­
erated will be a certain style of the address language, and the address
program written when the requirements of the given style are observed
requires only recoding to become a program for the actual computer.
In this sense, the language of any actual computer is an address lan-

69 -

guage.
On the other nand, any elementary IaVM operation may be reproduced

by some sequence of operations — a routine for any actual general-pur­
pose computer. Naturally, in going from the address program to the pro­
gram for an actual computer it is necessary to allow for machine-mem­
ory capacity (and its linearity), as well as for the presence of vari­
ous program registers.

The analysis of address programs shows that address programming
reduces to construction of various schemes for scanning the information
[10]. By using the concepts of addresses of higher rank and schemes for
scanning the Information on the basis of such addresses, we can consid­
erably simplify the problem of programming and are able to write algor­
ithms (their address programs) in a form that does not vary during the
process of execution and that does not depend on the parameters of the
particular problems (in contrast to programs written with Instruction
readdressing).

An arbitrary address algorithm may be represented in an equivalent
form (equivalent the sense of results obtained) such that all of the
address functions entering into the algorithm representation appear in
rank not exceeding two [16]. But algorithms describable with the aid
of only first-rank address functions and not including substitution
(readdressing) formulas represent a very narrow class of algorithms
[11]. Thus in order to obtain algorithmic completeness, we must in­
clude In the set calling by second address or a substitution opera­
tion.

We should note that the first of these operations possess certain
conveniences that the second does not offer in connection with the fact
that it is better in practice to use programs that do not change while
they are being run. Moreover, such programs are easily buiJt in as

- 70 -

blocks or consolidated elementary operations, for example, or matrix
operations and In general for the solution of linear-algebra problems,
for realization of various methods for solving differential equations,
etc.

The transfer of information to built-in multiterm operators or to
subroutines may prove Impossible without specification of parameters
(dimensions of vectors, matrices, orders of systems, etc.); if, however,
we use standard methods for specifying Information together with the op­
eration of calling by rank-two address, it becomes possible to trans­
fer all the needed information on blocks of complicated structure, re­
gardless of the values of these parameters, using a single master ad­
dress. We shall discuss this in more detail in the next chapter.

The development of mathematical specifications for the "Kiev" com­
puter paralled the word on creation and development of the address
language. The idea of constructing an interchangeable wired memory
(suggested by Ye.L. Yushchenko) in which standard routines for realiza­
tion of various algorithms could be stored in the form of wired mod­
ules was initially implemented with the aid of the NGO and OGO group
operations. This same idea served as the stimulus to development of the
concept of an address of higher rank (rank two), and together with it
the initial concept of the address algorithm, first formulated in [10].
The analysis of several address algorithms, Including algorithms for
translator programs, led to the idea of a group operation based on an
address of rank two, the F operation, which was also included in the
operation set, and which later became very popular with the programmers.
This also facilitated the further development of the address language,
since it is precisely the F operation that plays a substantial role
in the practical application of tills language to the "Kiev" computer.

The suggestions entailed by the analysis of address algorithms
71 -

were made when the computer circuits had been completely developed,
and some of them hud already been wired in. In particular, this affect­
ed the proposals of Ye.L. Yushchenko for the F operation, the Jump on
address content operation, relative Jumps, etc. The attempt to main­
tain hardware simplicity and the existence of already developed circui­
try permitted realization of only some of these operations, even
though complete hardware designs were made.
ADDRESS DESCRIPTION OF "KIEV" MACHINE

Let us describe the operation set for the "Kiev" computer in ad­
dress language.

We shall Introduce designations for the program register and
switches of the "Kiev" machine:

C represents the Instruction counter — the Instruct ion-loading de­
vice (UVK), 11 bits;

K represents the Instruction register (RK), 41 bits;
P represents the link register (RV), 11 bits;
U represents the loop register (RTs), 10 bits;
A represents the address-modification register — address counter

(ScnA), 10 bits;
Tp represents the emergency-stop flipflop register (1 bit);
Tb represents the emergency-stop blocking switch (’Tb - 1 when

the switch is on while ’Tb = 0 when it is off).
In describing the operations, including the operation of these

registers, we shall use only the letter designations — the addresses,
which shall assume to be different from the codes tor the address oi'
the Internal memory unit (VZU).

According to the program-control principle used, a separate machlne-
operatlon cycle consists in execution of an instruction 'K whose code
is stored at the given moment in the instruction register K, ana in

- 72 -

the transfer to this register of the code for the next instruction,
i.e., the instruction that is to be executed during the next cycle.

The instruction counter C is used to store the number (address)
of the next instruction in the "Kiev" computer. The execution of in­
struction ’K depends upon its content (code).

For convenience in describing the set of elementary operations
executed by the individual instructions of the"Kiev" computer, we
shall isolate the following portions of the Instruction register K

and label them appropriately:
represents the operation-code address register, bits 41-37;
represents the address I modifiability indicator bit, bit 36;
represents the address-I register, bits 35-25;

E2 represents the address-II modifiability Indicator bit, bit 24;
Ag represents the address-II register, bits 23-13;
E^ represents the address-III modifiability indicator bit, bit 12;
A^ represents the address-III register, bits 11-1.
In connection with the number of bits set aside for the specified

registers, we may store the following octal codes, respectively:

. 01............ 37;
'£t, '£„ '£j~0,l;

'Ag, 'Aa = 0000, 0001........... 3777.

Depending on *A0 (operation code), the computer will execute the
following operations:
Fundamental Arithmetic Operations

1) »A0 = 01. Addition operation +. The following address program
is realized:

a ... 4- '£/>!) 4- '(A + '£,'/!)=>'A, 4- 'EaA
P {'M, + 'EJA | > I) ; 'C 4- 1 =)C, 6

P['T6~ 1}'C4-2=)C| I
6 ... *C=)K

The line with the label a means that when = 1, the corresponding

- 73 -
I i

1 "W.. . y1 ■■ —■ ■ ■ ——■1nil

address Is modified, l.e., It Is Increased by the amount of the con­
tent of the address-modification register A, while when ’E^ = 0, the
operation Is performed directly according to the address. The next
line represents a test to see whether the result causes an overflow,
together with a Jump to the Instruction carrying the next number
('C 4-if there is no overflow. When the result causes an overflow,
the second predicate formula Is used to test the condition of the emer­
gency-stop switch, and when the switch is on, the computer halts; when
it Is off, the single instruction ('C4-2 =>C) is skipped. The latter is
used for automatic intervention in the computational process (re­
scaling, etc.). These features of instruction execution apply to all
operations in the given group.

The following two operations are executed in like manner:
2) *Aq = 02. Subtraction —.
3) ’Aq = 12. Division :. The operation of division by integral

powers of 2 is equivalent to an arithmetic shift, since division is
performed without rounding.

4) ’Aq = 10. Multiplication without rounding x. The address pro­
gram

(A, 4- ,E1'/L) x '('/144~ ’E/A) =) '.4S 4- ’£3 '1
'C+ 1=)C

SC —) K

is realized.
5) ’Aq = 11. Multiplication with rouding fxl ; execution of this

operation resembles that of the preceding operation.
Auxiliary Arithmetic Operations

6) ’Aq - 03. Instruction addition S^K.

|' ('/I, 4- 'L/A) 4- |'('A2 4- —)'/134-'£3'/l
'C p I

a

74 -

The S/K operation differs from the addition operation in that
in this case we add to the absolute value of the content of address
’A2 + ’E2'A (instruction code) the content of the address ’A^ + 'E^'A
(readdressing constant) and give the result the sign ('A8 +'E/.4) (the
’’sign” of the instruction) .

7) ’Aq = 06. Operation of subtraction of absolute values ”| — | .’’
8) *A0 = 07. Cyclic addition Ts 4-; this is addition of words with

elimination of overflow from the highest-order digit position. As with
the preceding operations, address modification is permitted.
Logical Operations

After each of the operations in this group, control Jumps to the
instruction bearing the next number.

9) ’Ao = 13. Logical shift L The code ’ (’A^ + ’E1’A) (inclu­
ding the sign bit) is shifted through the number of bits indicated i:i
address III of the word having its address (*A2 + ’E2’A); a right
shift takes place if *(’A2 + ’E2‘A) < 0 and a left shift occurs in
the opposite case; the result is stored according to the address ’A^ +
+ *E ’A.

10) *Aq = 35. Normalization N. The number '(’A + ’E-^'A) is nor­
malized, the exponent of the number is stored in the six lowest-order
bits on the basis of the address (*A2 + *E2 ’A), while the mantissa
is stored according to ‘A^ + ‘E^’A. Moreover,

'C + 1=>C
«C=)K

11) «A0 = 14. The operation of digit-by-digit logical addition V

'('A, + 'E'A) V '('A, 4- 'E/A) =>'A» + 'E,'A
'C+ I =)C
*C=>K

The following two operations are executed in similar fashion:
12) ’A =15. Operation of digit-by-digit logical multiplica-

75 -

tlon A.

13) ’Aq - 17. digit-by-digit logical inequality operation = .
Control-Transfer Operations

All control-transfer operations leave the content of the VZU
unchanged; the results of their execution affect only certain special
registers.

14) ’Aq = 16. Operation of conditional control transfer on equal­
ity SrZ. This operation realizes the program

P {'('A, 4- ’£,'A) « '('A, 4- '£/A)| ’A3 4- '£,'A =) C 4-1 =>C

15) ‘Aq = 04. Conditional control transfer on relationship ’’less
than or equal to” Crl

P ('('A. 4- A'A) < '('A, 4- '£/A)l 'A, 4- '£3'A =.)C i 'C 4- i =>C
2C =>K

16) ’Aq = 05. Conditional control transfer on relationship "less
than or equal to, neglecting signs" Cr2

a P{l'('AI4-'£1'A)| --|'('A24-/El'A)|rAa4-
4-'E,'A=)CfC+ 1==>C

C=)K

17) ’Aq = 31. Conditional control transfer on sign of number- UPCh

P ('('AH '£,'A) < — 0)'A34- '£3'A =)C; 'A,4- 'E,'A=)C
2C=)K

18) ’Aq = 30. Conditional Jump to subroutine UPP

P {'('A, 4- '£/A) < -0| ’A3 4- 'E3'A=)C;
'A14-zE,'A=)P|C4-,I=)C •

8C—)K

Thus if the indicated condition is satisfied, the content of the
link register P Is replaced by the quantity ’A + ‘E, A and the machine
proceeds to execute the command whose number is specified In address
III. Here ’A^ 4- ’E^’A is the address of the initial subroutine instruc­
tion, while *P is the number of the instruction which is to receive

76 -

control after execution of the subroutine. If this condition is not
satisfied, control goes to the program instruction carrying the next
number.

In this case, the corresponding subroutine concludes with the
special instruction PRV.

19) *Aq = 32. Jump governed by link register PRV. This instruction
causes execution of the following operations:

'P=)C
0=)P

The result of the operation does not affect the contents of registers
A1# A2 or A^.
Peripheral-Equipment Calling Operations

All operations in this group are group operations, l.e., they re­
fer to sequences of codes.

20) ’Aq = 20. Load numbers VI. Into high-speed storage (OZU) lo­
cations having addresses

'Aj, 'A| 4" L - • > »
the computer is to load words first converted from the binary-coded
decimal system into the binary system. We shall arbitrarily represent
this group operation in the form

/'/I \
'(FIJI) converted into binary => |, ‘

In addition, the following transfers are made:

'C+ 1 =>C
*C=)K

21) »A0 = 21. Load Instructions V2; this is executed in the same
way as the VI operation, except that words are transferred without con­
version

77 -

\njj)
'C + 1=)C ’
lC=)A'

22) »A0 = 22. Code readout Pech. This is an Inverse operation:
the contents of locations ’A^, • A^ +1, . .., ’A? are read out. In ad­
dition,

'/1S=>C
2C=>/C

23) «A0 = 23. Exchange of OZU codes with external ZU (Mil) in writ
mode — MBZ. The codes contained in the sequence of OZU locations

*A|, '/11 4- 1, At,

are transferred to MB:

and in addition
'/!,==) C
’C =>K

24) »A0 = 24. Transfer of codes between OZU and MB in read mode —
MBCh. Codes are transferred from MB into a sequence of OZU locations
1Aj} Aj 4- 1, •••> 1Ag, i.e.,

('AA

and, in addition,
M3=)C
C—)K

25) •Aq = 25. Preparatory operation for MBZ and MBCh operations,
ensuring proper preparation of the magnetic drum — MBP. Here 1A^ J
for the 23 operation and equals 0 for the 24 operation; ’Ag - n.2~c‘ ;
n = 1, 2, 3 — number* of the MB from which the codes are to be taken;
•A^ — number of number on MB with which the corresponding operation
must commence. In addition, the following operations are performed:

- 78 -

'C-+ 1=>C
•C=;A'

26) »A0 - 33. Stop.
Address-Modification Operations

The address-modification operations are group operations in the
sense that the modification-register content formed by them may be used
as an instruction group.

27) ’Ao = 26. Beginning of group operation (NGO). With the NGO
operation:

a) the number characterizing the number of loops.in the cyclic
process is transferred to the loop register Ts,

'A=>4;

b) the readdressing constant
'A,=>A; .

is transferred into the address-modification register A;
c) the predicate formula

. P ('ZZ-M]'/!.=) 'C-b 1=)C;

is realized;
d) ’C=)A'.
Thus the NGO instruction prepares the content of the modification

register A so as to provide the required modification of variable ad­
dresses .

If we know the number of loops N and the readdressing interval £
in advance, then we let

'At=='At + Np.

In this case, at each repetition of the loop the content of the A reg­
ister is increased by £. Since 'U^'A, loop calculations continue; at
7/M > the computer exits from the loop, going to the Instruction

with number ’A

79 -

28) *A0 = 27. End of group operation OGO. With this instruction:
a) the content of the A register is Increased by the readdressing

interval 'A, 4-’'A ==> A;
b) the predicate formula

P |'ZZ = ’A} ’A3^=)C I ’A2~)C

is realized.
c) 5c=)K.
Here ’A^ 1-3 the number of the instruction that receives control

after looping has terminated; ’Ag is the number of the instruction to
which control is transferred when looping continues. (We note that 1 Ag
is not the number of the NGO instruction, since the latter will not be
repeated here when we go from one loop to another, since its repetition
would lead to restoration of the initial setting of the A register).

29) ’Aq = 3^. Operation of calling by address of rank two (calling
by specifier) F.

In addition to the NGO operation, which sets the address-modifica­
tion register, the computer can realize the F operation, which also

performs this function. While the value to be transferred to the A reg­

ister is specified explicitly in the NGO instruction (as ‘A.J with the

F instruction, this value is specified only by its address. The F in­

struction involves execution of the following operations;

*('A, 4- '£,'/»)„ => A
T('A.4-'£('A)n)=}'A3 4- 'E,'A
’C 4- I =) C
SC =>K

(’Ag is not used in execution of the instruction).
Here we let ’ajj represent the content of address II of location

u; with ’A^ = a; we have with the F operation:
p=> A

A3
'C 4- I C
JC =^) A’

80 -

For arbitrary cyclic parametric processes, the availability of the
F operation permits us to write programs that do not change in the
course of their execution (they do not use instruction readdressing).
GROUP OPERATIONS OF THE "Kiev" COMPUTER

Problems pertaining to the checking out of programs in the solu­
tion of problems by TsAM are of primary importance. If two different
programs can be used to solve the same problem in accordance with the
selectected method, from the viewpoint of convenience in loading the
program into the machine and speed of debugging, preference should be
given to the program that takes up the fewest memory locations, i.e.,
which contains information on the problems in the more compact form.
The more condensed program may be selected even where the direct calcu­
lation governed by it takes somewhat longer to perform. It is better
to use a program with a larger number of storage locations if its in-

/
structlons may be stored in passive memory, since this is more conven­
ient from the viewpoint of monitoring and loading.

Savings in program instructions may frequently be achieved by the
inclusion in the computer’s elementary-operation set of Instructions
for readdressing and ordered storage of quantitle s in a sequence of stor­
age locations.

In the general case, programs will include schemes for scanning
several sequences or tables, i.e., they will be complex loop processes
depending on parameters.

There are several methods known that occasslonally permit us to
reduce program length (transfers to standard addresses, transfer from
standard addresses into a sequence, etc.). We can consider the problem
of shortening loop programs, not by clever programming, but by using
computer circuitry to realize certain special Instructions.

Special instructions for which information on the execution of
- 81 -

loop programs is specified in compact form with the aid of a reduced
number of words are called group instructions. The introduction of
group operations also serves the purpose of using computer passive
storage.

We shall now give a more complete description of the group opera­
tions for the "Kiev" computer.

I. Let a cyclic address program contain a group of addresses vary­
ing from loop to loop in accordance with the law

«o + » + 'P. (16)
where 1 is the loop number, is the initial value of the variable
address, ot is the value of the initial (first) address shift, and p
is the readdressing interval.

The possibility of executing an initial shift by a quantity a dif­
fering from the readdressing interval is especially convenient for scan­
ning of information stored in different areas of memory. Thus, the
information required for a loop depending on a parameter will be:

a) the set of computational operations for the loop in the Initial
form;

b) specifications for the variable addresses;
c) the pair of numbers (a, p) determining the loop parameter.
The information in a) may be specified with the aid of appropriate

computational instructions. To permit the machine to recognize variable
address, i.e., the need to form addresses in accordance with Rule (IC),
an extra bit (the 12th) is provided in each address of the "Kiev" com­
puter. Two operations are used for this purpose: NGO — beginning of
group operation, and 0G0 — end of group operation. The first of these

may be used independently, and the other when the F or NGO operations
are used.

The NGO operation Is coded as follows:
- 82 -

uro Mak

Here NGO is the operation code; M is a number equal to a + Np, where N
is the total number of loop repetitions (if some other condition Is
used for loop termination, then address I will contain the word 11...1);
ci is the value of the Initial shift, and it will have the value indica­
ted above, while k is the number of a certain Instruction to which con­
trol is to be transferred after termination of the loop (for subroutines,
we may indicate the address of the permanently connected location 31^6,
which contains the code for the Jump according to link register in­
struction) .

The functional meaning of the NGO operation is as follows:
1) the constant M characterizing the total number of loops is trans­

ferred to the loop register //;
2) the constant a, the magnitude of the initial shift for the vari­

able addresses, is transferred to the address register A;
3) the contents of the address register and the loop register arc

compared, and If they agree, control is transferred to the instruction
whose address k is contained in address III of the NGO instruction, i.e.,
M,=)C; if this is not the case, control Jumps to the instruction with
the next number, i.e., -r 1=^)^.

There are two ways of changing the readdressing interval — the con­
tent of the address register:

a) by readdressing the NGO Instruction through an appropriate
change in address II. In this case, the program will contain the vari­
able instruction NGO; for each of the loops, provision is made for re­
peated execution of NGO Instruction, and thus a new value for the vari­
able-address modification constant is prepared. This method is conven­
ient in the coding of complex looping processes;

- 83 -

b) by using the OGO instruction, which is coded in the form

oro 4000 p ^1 k2

Here the OGO is the operation code; p is the readdressing interval (the
interval £, increased by 4000, is shown in address I); k^, kg are the
numbers of certain instructions.

With the OGO instruction:
1) the readdressing interval p is added to the content cf the ad­

dress register: p 4- '/I — (1 .e ., 'A, +• A — >4);
2) the contents of the address register and loop register are com­

pared, and where they agree exactly, control is transferred to the in­
struction whose address kg is shown in address III of the OGO instruc­
tion (i.e., 'At—)C), while if this is not the case, control is trans­
ferred to the instruction whose address k-^ is shown in address II of
this instruction (i .e.,'Aj—>C).

It is important to note that when the OGO instruction is used, the
program provides for execution of the NGO instruction for the first
loop; when the loop is repeated, the NGO instruction is not repeated,
and remains unchanged. Thus by employing the OGO operation together
with the NGO operation, we can code looping programs that Include param­
eters into fixed, which is especially convenient for loop processes In­
volving initialization, as well as where the number of loops is known
in advance. These operations are widely employed in standard routines.

The following circuitry is used in the control unit to realize the
processes described: loop register, address register, address adder,
and coincidence unit.

The adder is used to add addresses specified in an instruction to
the content of the address register, and during execution of an OGO in­
struction to add the readdressing Interval to the content of the ad-

84

dress register.
II. It is easy to see that in the coding of complex looping pro­

cesses, the availability of one address register permits us to use the
OGO operation only for the coding of inner loops, which in turn do not
include F or OGO operations. Outer loops must be coated with the aid of
NGO Instruction readdressing.

To permit wide utilization of the interchangeable built-in memory,
which is realized in the form of modules that can be switched into (or
out of) the internal passive memory of the computer as needed, the
"Kiev" machine has the F group-type operation, which permits us to load
any program into passive storage.

The F operation is codes as

0 9 a

Here F is the operation code, and cp, a are the addresses of certain
locations.

Both the F and NGO operations prepare the address register A,
which is then used to form the variable addresses. In contrast to the
NGO operation, however, where the readdressing constant Is explicitly
coded, the quantity a + ip is now coded in address II of the location
whose number cp is specified In address I of the F instruction;

a 4- ip C?h — ® +

1 *e •' '<p|| «=>>!.
In addition, when the F operation is executed, address a receives

the code contained in location a + ip, whose number is stored in ad­
dress II of location q>, 1 .e. ,"9U=^)'At Since the value of g^oup read­
dressing constant is now no longer explicitly contained in the program,
tne latter will not change in form. Changing the readdressing constant

- 85 -

now reduces to changing the content of a certain address cp. Address II
of the <1> instruction is not used.

Thus, outer loops in complicated looping processes may be coded
either with the aid of the NGO operation and subsequent readdressing
of this operation, or they may be coded in fixed storage with the aid
of the F operation. In connection with the fact that the code in ad­
dress I of instruction F may be taken as the address that ''specifies"
the amount of the shift in the sequence of certain addresses, the F op­
eration has come to be called the operation of calling by address of
rank two.

The first function of the OGO operation — changing the content
of the address register — can also be used in connection with the F op­
eration .

The F operation is realized in the following manner: the address
cp of rank two is transferred to the address register in high-speed stor­
age; the content of this address ct + ip = (address of rank one
1 <Pjj) is transferred out of high-speed memory to the Instruction regl -
ter in the control unit (to its free address II); next the code ‘S’tj. 1
again transferred to the address register of the OZU from the instruc­
tion register. The content of this address (the content based on

an address of rank II) is taken from the OZU and held there in the num­
ber register. The code from address III of the F instruction is trans­

ferred to OZU, and used as a basis for writing the content of 1 lie num­

ber register 1 (’<Pjj) •
Example 1. The principal element of a square matrix with side n,

whose elements are arranged (along rows or columns) in accordance with
2the addresses a + 1, a -t- 2, . .., a + n , is stored in the location wJtn

number y.
For the quotes "Kiev" machine, the program will have the form

86 -

pHere M = a. + n ; by writing the number 4000 in instructions N 4 3 and
N 4 4, we indicate that there is a unit in the 12th digit position of
the address (group-operation indicator); is the address of the in­
struction to which control is transferred after the given routine has
been run.

Example 2. We are to evaluate the sum
n
yi q,xz 4- ft,

. , —J c,xi + d<‘Ji ’
I I™ I

Let the given values be stored in accordance with the following
addresses:

- 87 -

The program will have the form

Here k is the address of the instruction to which control is transfer­
red after the progx^am has been run; the location with address 6 con­
tains the code

The desired sum is obtained in address Y.
Example 3. The sequence of addresses

'b + 0, 'b 4- i............. 'b + 35

contains the coefficients for seven polynomials of which the first poly­
nomial is of degree one, the second of degree two, etc. The coefflc-
clents of the polynomials are stored in order of increasing power. The
values of all the polynomials are computed by Horner’s method for a fix­
ed value of the variable contained in address £, and they are stored
in the sequence of addresses

'B 4-0, 71 4-1............ 714-6.

whose contents then form the result obtained by running trie alg r.ithm.
The address program may be written in the following form:

0=-.)5£J. 0=-)’b; I—)A1; 2—} AO

Af ... +

Let us look in more detail at the way in which the F operation is
used to program the second and third lines, which contain address func­
tions of rank two. A total of four addresses (B, 6B, b, 6b) are subject
to the operation of two primes. Since these addresses are encountered
in the algorithm only in the combinations 'B 4- ’6B and ’B 4- *6b, the
two lines indicated are conveniently replaced by the following lines:

or, in "Kiev" machine codes:

Here r^, r^, and r^ are working locations.
REPRESENTATION OF ADDRESS FUNCTIONS IN THE "Kiev" COMPUTER

Let us introduce the concept of the rank R of an address function
f:R(f).

1. An address function a that does not contain a prime operation
will hav'; rank R of zero:

R(a) = 0.
- 89 -

2. Let the rank of a function f equal £. Then the rank of a func­
tion ’f will equal R(f) + 1 = s + 1, i.e.,

3. Any function O^Cx) of a single variable x, other than a prime
function, will have a rank equal to the rank of its argument:

4. Let R(a) = s-^, R(b) = s2. The rank of a function aeb, where e

is any arithmetic or logical operation in two arguments will equal the
largest of the ranks s^ and s2:

/? (c96) = max (/? (a),/?(&)).

An arbitrary address algorithm may be represented in a form that
is equivalent (from the viewpoint of meaning) such that all of the ad­
dress functions entering into its representation will have rank not
exceeding two.

As an example, the address formulas
"a=)3 (n > 3)

and

a =)m3 (/;: *> 2)
may be written, respectively, in the form

Here and below a) is some working address whose content has no effect
on running of the algorithm.

We also note that any address formula
a _=?) b,

where a, b are address functions of rank n and m, respectively, may be
replaced by an equivalent program of two lines

90 -

« =) (»
'«> —) h

A distinguishing feature of address-function representation in the
"Kiev1’ computer consists in the following method of executing operations
according to rank two, rank zero, or higher ranks:

1) the components of any (arithmetic or logical) operation taking
the form of address functions of second or higher rank are formed solely
with the aid of the A-register;

TABLE 1
Representation of Address Functions in "Kiev"
Computer Codes

-91-

Continued

92

Continued

1) Address program: 2) program in "Kiev" codes; 3) or; 4) formation of
content of A-register according to the following formula; 5) times.

- 93 -

2) addresses of rank zero can only be components of operations In­
volving addition with the content of the A-register or with zero, where
the result is stored according to the A-register.

Table 1 shows the fundamental relationships between address func­
tions and programs in "Kiev" computer language; here a, b, and c repre­
sent nonnegative octal integers < 3777 (addresses of rank zero), while
^i, 6g and 6^ represent numbers equal to zero or unity; three dots in
the instruction column indicates that any number of instructions can
be inserted at this location, provided they do not change the content
of the A-reglster; a dash in an Instruction address indicates that the
content of this address is not used for the given operation; e is the
symbol for an arbitrary (arithmetic or logical) elementary operation;
A represents the modification register (A-register).
ALGORITHM FOR FORMAL TRANSLATION OF ADDRESS FUNCTIONS INTO "Kiev" MA­
CHINE CODES

The special feature of algorithmic languages lies in the fact
that in contrast to natural languages each of the syntactical signs
(or set of signs) carries its own information as to meaning, which does
not depend on relationships with other signs. As it applies to the ad­
dress language, this feature permits us to give a programming method
in the form of a new principle of translator-program operation.

The general operating principle of previously known translator
programs (see, for example [7]), including the above-mentioned PP-2
and PP-AK for the "Kiev" computer, consists in searching through ths
algorithm as written for a representable set ol symbols to be used a;;
the basis for formation of one or several computer instructions. Where

parentheses are used in representation of formulas, such a representa­
ble set will be, for example, a performable operation — the symbol lor
a two-term operation connecting two adjacent symbols for variables, or

- 94 -

the symbol for a one-term operation immediately followed by a variable.
On the basis of the representable combination of codes that has been
found, the translator program writes into the working-location block
that has been set aside the appropriate instruction or group of instruc­
tions (depending on the computer address format, etc.), selecting a
working location for the result where necessary; in the initial informa­
tion representation, the computer replaces this combination of symbols
by the number of the working location. In one way or another, conden­
sation of the initial Information continues, since the numoer of ele­
ments in the initial Information will be reduced under such treatment,
and the process is repeated until the entire representation is exhaus­
ted. The implementation of various improvements (for example, reduction
in the number of working locations) causes no difficulties in principle.

The following principle may be proposed for element-by-el^ement

translation of address formulas into machine language:
1) to write a program corresponding to a single address formula, a

working field of sufficient volume is set aside;
2) the initial information is scanned element-by-element in natur­

al order, Just once, and depending on the information element scanned
at the given instant, the computer writes into the working field.

The principle of one-shot element-by-element scanning of the infor­
mation was proposed by Ye.L. Yushchenko [22] in order to realize an
algorithm for formal checking of the correctness of unparenthesized and
parenthesized representations of formulas. Later, M.M. Bushko-Zhuk pro­
posed to use this principle for translator-program operation.

Let us consider an algorithm of this type for translating address
functions into the language of the ’'Kiev” computer. For sympllcity, we
shall assume that the address-function representation may include:
an address of arbitrary rank, except for addresses of rank zero; arbl-

95 -

j
trary two-term machine operations (arithmetic or logical); one-term op­
erations with entrance address 0002 and exit address 0003 that can be
coded by the addresses of the initial instructions of the subroutines
realizing these operations.

We shall use the strict parenthesized representati on of the formu­
las, in which the order of execution of the operations is determined
solely by the parentheses (the hierarchy of operations is not consider­
ed), and where there are no superfluous parentheses).

We use metalinguistic formulas [13J to describe an address func­
tion in strictly parenthesized form. Strings of signs contained within’
corners < > are metalinguistic variables, whose values are strings of
symbols; the signs :: = and | are metalinguistic copulas: the sign ::
represents ’’equal by definition” while the sign | represents "or." A
symbol in a formula that is not a variable or copula will represent it­
self or a similar class of symbols. The connection of signs or variables
indicates the connection of the strings represented.

According to the adopted convention, tne fundamental symbols are:
(is an initial parenthesis;
) is a terminal parenthsls;
0^ represents one-term operations, including the prime operation;
Og represents two-term operation,
a represents an address.
Thus,
< fundamental symbol > :: = (|)| Oj|Og|a.
We first introduce the concept of a component:
< component > :: - a|0-.< component > | < component > 0? < compon­

ent >) .
We can now define the strictly parenthesized representation of an

address function as follows:

- 96 -

< strictly parenthesized representation of a function > :: = a|0^ <
< component > | < component > 0^ < component >.

The formula gives a recursive rule for forming address functions in a
strictly parenthesized representation.

The working block set aside for writing of the program is filled
from the bottom upward. The instruction components are established as
the computer scans the coded information (in the course of operation,
certain instructions may be completely formed, while others, possibly
Including some to be executed earlier, will still not be formed or will
be formed only in part). The machine reduces the number of working loca­
tions needed as it runs.

We Introduce the following definitions:
is the specifier for an initial information element;

cp is the specifier for elements of the input Information; first
*<P = C-1(a) ;

C is the succession operation in the sequence of addresses for the
elements of the initial information, the first of which is represented
by a (several elements may be placed into one machine address);

V' is the specifier for the working block set aside for recording
of the working-program instructions; the address of the last location
in this block is _s;

tc is the specifier for the block of working locations for the work­
ing program (RP);

r is the first working location of this block;
£, ja, and X are working specifiers.
The specifier Z is used when parentheses are manipulated. With the

aid of this specifier, upon processessing of the initial-parenthesis
symbols, in some block of translator-program (PP) working locations
that contains k addresses (y + 1, y + 2, ..., y + k) there are formed

97 -

I

the appropriate addresses of the Rp instructions; the process of their
formation is completed when the machine processes the corresponding
paired terminal parenthesis. The length of the block k determines the
admissible maximum complexity of parenthesis structure in the expres­
sions for the address functions.

The specifier p, is used to store information to indicate that at
the given instant a one-term operation is being programmed — a call to
an appropriate subroutine (here a one is placed into p.) .

The specifier X is used to store the address of the Rp instruction
Jiich the machine must proceed to program after processing the symbol :
for prime-ranks exceeding the first or a symbol for a one-term opera­
tion.

In addition, we shall also assume that pr f will represent an In­
dicator for the element f. There are the following types of indicators:

cd, the indicator for the end of a function representation;
'adr, the indicator of an address of rank one;
(, an initial parenthesis;
), a terminal parenthesis;
’ne-adr, the indicator of the presence of a prime operation not

pertaining directly to an address;
0^, the indicator for a one-term operation;
0g> the indicator for a two-term operation;
rab, the Indicator for a working location.
In an algorithm, the element indicators cd, 'adr, (,), 'nc-adr,

0-, and Og are used as labels.
We use 'V-q, *^III represent, respectively, the con­

tents of addresses 0, I, II, and III of location Rectangular formats
are used for the "Kiev" computer codes employed for an address program.

We should take special note of the role played by the uncondltim-
- 96 -

2 al-jump address formula pr cp (third line of the algorithm).
The specifier <p scans the elements of the input information (ad­

dress algorithm), i.e., at any given Instant of algorithm operation,
exponent 2q> is the element being processed. Depending on the element
indicated, the formula

2 pr <p
is used as the basis for going to the algorithm line marked off by the
appropriate label.

2The function pr <p can take on one of seven values: u>, ’adr, ’ne-
adr, (,), 0^, or 02; thus this formula represents a jump to one of the
seven algorithm branches, each of which is Indicated by an appropriate
label.
AIgorithm for Element-by-Element Translation of Address Functions 1i.to
■"Kiev" Machine Codes

Initial address mapping

element-by-
elemement coded
address function

Resultant address mapping

Algorithm

99 -

100

Let us consider algorithm operation using as an example programming
of the address function

(*a — sin cos' ('a 4- 'b)) X sin'cuj,

where a) is the termination indicator.
We shall note the change in the address mapping at each step of

algorithm operation.
First > = 0; 'k = 0; 'x=»r; \ = s; '£ = i 4- 1; '(s — 0 = 0, where 1 = 0, 1, 2,

21. The initial-parenthesis code is processed; pr cp = (:

2. The code 2pr cp = PRIME is processed:

23. The code ’a; pr cp = PRIME a is processed:

'(s —2)

4 . The code ” 2pr cp = 02 is processed:

— s — 1
'X-0

'(s— 1) =

25. The code sin; pr cp = 0^ is processed:

101

'4» — s — 3

+ 0003 r + 1

'9 =■ s — 4

'($ —4)-- ynn 302G s-3 sin

'9 « s — 5

II
«■

m
 1 * + 0002

> = 1
p6. The code cos; pr <p = 0^ is processed:

> = 1

C
A 1 U
I

II + 0003 0002

'X =
'9 =

s — 5
s — 6

'u
i> 1 C
l

II ynn 3026 J —5 cos

s —7

> - 7) - + 0002

27. The code pr cp = PRIME is processed:

V = 0_____________________

'(s - 7) - 0 0002

28. The code pr qp = (Is processed
' (T + 2) — 5

— 5 — 8

'(s-7)- 0 r+ 1 0002

'(S — 8) - r + >

2The code pr <p = PRIME a is processed:

'(s —8) =

- 102 -

W".

10.

11.

12.

13.

14.

15.

16.

The

The

The

The

The

The

The

code

code

code

code

code

code

code

It . II . c+ ; pr 9 = O2

'(s - 8) = a

n ,vii

I! \ II .

It \ tl

"x"

sin

it । n .

i!^ 'Mi’.'iiwwri

2; pr cp = PRIME a is processed

'(s —8) = a b

2pr 9 =) is processed:
v _. y -! 2

0 s — 3

2 pr 9

2 pr 9 =

pr2cp =

) is processed:

9 = s

02 is processed

's —

0-^ is processed

'(s —

pr2<p = PRIME

> = 0

+ 0002

is processed:

(s — 11) = 0 0002

- 103 -

p17. The code ”’s”; pr <p = PRIME a is processed:

0 C 0002

In "Kiev" computer language, tne entire program looks like this:

s- II 0 c 0002

X — 10 ynn 302b s — 9 sin

s — •» + 0003 r + 2

s — 8 + b r + 1

5-7 0 r + I 0002

x — 6 ynn 3026 5 — 5 cos

5 — 5 4- 0003 0002

s— 1 ynn 3026 s— 3 sin

s — 3 + 0003 ' +1

s -2 0 a r

5— 1 — r • r + 1 r

s X r r +2

- 10^i -

Chapter 4
SUBROUTINES FOR "Kiev" COMPUTER

GENERAL PRINCIPLE OF STANDARD-BLOCK CONSTRUCTION AND SUBROUTINE METHOD
Analysis of address programs shows that the availability in TsAM

of algorithmic operations permitting calling by addresses of rank two
simplifies the algorithmic language and thus considerably broadens the
scope of tne computer. It must be noted that the utilization of such
operations simplifies programs, while for machines having fixed storage,
it becomes possible to store arbitrary programs and to ease the task of
creating a library of standard routines and of using them in the course
of problem solution.

As we know, where an extensive library is present, it is possible
to construct complex programs almost completely from library routines,
using so-called compiler or interpreter systems [12].

The creation of a library of subroutines for the "Kiev" computer
provides a comprehensive set of standard routines, for example, for
evaluating scalar and vector functions of scalar, vector, and matrix
arguments. The availability of library simplifies work on programming
automation, checking, loading, and the debugging of individual program
segments, and thus reduces the probability of programming errors and
yields a considerable gain in time.

The subroutine library for the "Kiev" computer Includes a set of
programs placed into the passive storage unit (PZU), into the high­
speed memory, and onto magnetic drums. Its distinguishing characteris­
tic is the presence of interchangeable built-in blocks, which may be

105 -

connected into machine passive storage as needed.
One part of the standard subroutine such as, for example, sin x,

In x, arc tan x, ex, etc., as well as certain constants, are wired into

fixed PZU blocks. The interchangeable built-in memory contains universal
translator programs; subroutines for problems of linear algebra; sub­
routines implementing floating-point operation, etc. In addition, here
we also have programs for evaluating exactly the same function with
different degrees of computational accuracy, as well as different amount
of storage and running time. The latter makes it possible to make opt -

TABLE 2
Fixed Built-In Constants

10(5 -

Continued
305G 04 6314 6314 6315 0,3
3057 4 6314 6314 6315 0,8 = 4

o
3060 00 0203 0446 7230 0002 " 555

3051 02 4365 6050 7534 o.io-A

3062 05 0753 4121 7270 0,32

3063 05 0574 G033 3447 _1^

3064 ’ll 0156 5650 1025 1
/«

3065 05 7055 2615 4264 1
e

3066 14 4417 6652 1012 K
4

3067 12 1371 4066 7116 n

3070 13 2404 7463 1772
/2

2
3071 11 1715 1642 G202 1

/5
3072 16 3765 6134 5604 c

3
3073 06 3011 0514 7521 1

/2k

3074 12 6770 2505 4213 c
T

3075 05 2525 2525 2525 1
3

3076 01 47G0 1366 1043 1

3077 06 7455 7305 2237 Al = logler

1) Octal number of location; 2) content in
base-8 system; 3) remarks; 4) machine unit.

mum use of the computer in the solution of concrete problems.
Many particular problems appear in connection with the use of

standard routines.
Depending on the degree of diversity of the programs to be solved

with the aid of a standard routine, in addition to the direct input
data, the standard routine will be furnished with a given number of
different auxiliary parameters (dimensions of vectors, matrices, tables,
orders of differential-equation systems to be Integrated, etc.). As a
rule, all of the input information for a standard routine is stored in

107 -

fixed memory areas, and this often involves the occupation of consider­
able amounts of high-speed memory (in the case of multiposition pro­
grams), and takes much time for the transfers of data from working loca­
tions into standard subroutine locations and, conversely, for transfers
from standard locations into working locations.

Moreover, the various auxiliary parameters may include information
on the storage of Initial data in machine memory and as a rule this in­
volves modification of the programs for the given parameters.

The use of operations based on addresses of rank two in the "Kiev"
machine permits us to eliminate modification of standard routines for
new parameters and, in particular, makes it possible to store any
standard routine In fixed memory and, moreover, enatles us to minimize
requirements for standardization of storage allocation for initial in­
formation in computer high-speed memory. For the majority of standard
routines (and, In principle, for all such routines) it is sufficient to
use one or two fixed addresses where we store Information on the alloca­
tion of initial numerical blocks. In the simplest case of evaluation
of one- and two-term functions thesese addresses (let us call them
and q>^) will contain the arguments or values of the functions.

We make the following assumptions for the specification of more
complicated forms of Information:

A. Let the initial data for a subroutine be a vector; then Its
components a^, ..., an are stored in the address sequence

Ca. (C2)a.......... (Cn)a, (17)
where C is some successor operation in the set of addresses (here a
machine address may correspond to several addresses or vice versa).
For the most frequently employed successor operation, defined by the
relationship Cot = a 4- 1, we have instead of (17) the sequence

a 1. a I- 2.......... a n. (18)

- 108 -

a (?0 = a =r «)•

is furnished on the basis of the con-

matrix; the matrix components a. . are
J

In addition, on the basis of the address a, called the governing
address of the sequence, the machine will always store information on
the vector in the form of its dimension n (for the "Kiev’1 machine,
quantities of this type are best stored in location second addresses).

The sequence of addresses
a, Ca............ (C'a) a

will be called an a-sequence with successor operation C (vector type).
It is sufficient to assign to a standard routine at a fixed area

qg. and address, which we shall call the governing address of sequence
(i7):

'to ~

Thus, information on the vector
lent of the single-address <pQ.

B. Information on a square
.cored in the address sequence

Ca, (C2) a.......... (C<‘ -1> '•+>) a

by rows or by columns depending on the requirements of the problem; in­
formation .on the matrix is specified in the form of a single number
(the content of location ex) — size n of the matrix.

We sha.i 1 also call the sequence
a Ca.......... (Cr*),)a

an a-sequence (square-matrix type).
The standard routine is furnished with Information only in the

form of the content of address <p(, which equals the address of the
governing element of the sequence:

'?o --a;

’?<» “ n.

C. Information on a rectangular matrix; the addresses a and Ca are
us ?d us the basis for specifying the dimensions m and n of the matrix,

109 -

while addresses (C2)a, (C^)a, (Cmn+1)a are used as the basis for

storage of the matrix elements by rows or by columns, depending on the
requirements of the standard routine.

We shall call a sequence of this type and a-sequence (rectangular-
matrix type). As before, information is furnished to the standard rou­
tine on the sequence in the form of the content of a single address —
address of the governing element of the sequence:

'?o = a;
’<?o -m;

Cfo ~l- 1) — n.

D. The initial information for the standard routine is a square
matrix whose elements are vectors of different dimension n^,. The com­
ponents of the vectors — the matrix elements — are stored in type A se­
quences. Let the governing addresses of the sequences be

('i,i = ri,,)-

The quantities a are stored, in turn, in a type-B sequence
J

a, Ci.......... (€<•’’) a.

E. The initial information for a subroutine is a triangular (sym­
metric) nth-order matrix. The information Is specified by rows (or
columns) in the form of a sequence

<'«)*+'«
a, Ca, . . . , (C 2) i,

where the order n of the matrix is specified in accordance with address
a.

As in the preceding cases, information on a block is prescribed
as the content of a single address used as the basis for storing the
address of the governing element of the sequences. All of this makes
clear the general principle for construction of standard 1nformation
blocks and the method for developing information on them.

As a rule, each standard routine terminates with th^ instruction
110

PRV, whose function consists in transferring control to the instruction
whose address is contained in the link register. The content of the link
register is prepared appropriately in the call to the subroutine. With
the "Kiev" computer, in virtue of the presence of Just a single link
register, this method of going to subroutines is possible only for pro­
grams that do not themselves contain calls to subroutines. In other
cases, linkage between subroutines and routines is realized with the
aid of a previously prepared unconditional-jump indicator. Depending on
the level of the transfer to the subroutines, fixed addresses can be
used.
SUBROUTINES IN FIXED BUILT-IN STORAGE (PSP)

For all routines for one-term elementary functions, the entrance
address, i.e., the location that must contain the argument x prior to
the call to the subroutine will be 0002; the exit address, i.e., the
location into which the subroutine will write the value of the desired
function will be 0003. The routine for In x is an exception; this is
not a one-term function; to evaluate In x, the argument x is first
transferred into location 0002 while the result appears in two loca­
tions: 0003 contains the value of the function and 0004 the scale fac-
t or.

All PSP routines terminate with an indicator for a jump on the
basis of the link register (PRV), and this must be taken into account
in programming.

Frequently employed constants are placed into the PSP. Table 2
shows a list of them. Table J gives a list of PSP subroutines.

Ill

Program 1
[2 -* 10; conversion from

decimal system]
binary number system into

2-* 10...3100 01 0000 0000 0003
1 26 0012 0000 0000
2 11 0002 3050 0002
3 10 3047 0002 0004
4 12 0003 3045 0003

3105 01
6 12
7 02

0004
0004
0002

0003
3047
0004

0003
0004
0002

3110 12 0002 3045 0002
1 27 4001 3102 3146

TABLE 3
Subroutines for Interchangeable Built-In
Memory

1
nporptMMH

2 n OOjUCTb

•pryMCHia
•

3
ApryMCHT r.
pe.iyjihTaT y

h Ha-
sa/ih-
Haw

KOM3H1

5
Pafioaue

hmcAkh

Koaa-
MCCTBO
KOMAHJl
M KOH*
cram

Toh- *7
HOC1 b 1
jiet «•

TMHHHX
3HaK<n

8 riepeuoA 2-* 10

1— sm x

(-1.1) '0002 = x
'0003 --- y

3100 0004 10 10

(-1.1)

c © 8 8 W
 Ki

II
 II 3152 ’ 0004 9 7—8

1
*2 cosx (-1.1) '0002 = x

'0003 = y
3147 0004 12 7—8

1 , — Sin X

•I COSX

— In x n

;—2n; 2r/ ’002 = L
'0003 « (/

32C4 0004 20 6-7

(— 2k; 2k) '0002= L
2r.

'0003 •- v
3217 0004—0005 19 G—— 8

(0,1) '0002 = x
'0003 ■= y
'0004 = — n

3116 0004- 0006 29 6—8

j/’a”

1 -

1— arc sin x X »

— arc cos x it

(2-« I) '0002 « a
'0003 = y

3163 0004 6 7—8

(-U) '0002 = x
'0003 = y

3202 0004—0006 13 8—9

(-I.D '0002 = x
'0003 = y

3242 0004—0006 17 7—8

(-1.1)

o
2

8 8

n
ii

•<

>< 3244 0004—0001) 16 7—8

1) Name of program; 2) argument range of variation; 3) argument x,
result y; 4) initial instruction; 5) working locations; 6) number of
instructions and constants; 7) accuracy in decimal digits.

Argument *0002 (binary number); result ’0003 (decimal number);
initial instruction 3100.

In order to evaluate 1-sinxH-cosx) for _L<x< -J the polynomial of

112

best approximation
4 sin x « y sin ~ y = ((((C,y* + C7) y2 + C6) y2 + C3) y* + Cjy,

is used where
C. = 0,000 079 742 095; C, = — 0,000 233 688 278;
C, - 0,03 984 483 964; C, = — 0,32298 185553;

= 0,785 398 159 235. *

Using this same polynomial, the machine evaluates cos x with pre­
liminary reduction of the argument in accordance with the formula

x = -l--|x| or 1-|//|.

Program 2 and 3

r 1 ' ■ 2
BUMHCJieitite // = ysinx 11

3172 oOci 7553 6722
y = y cos

3175

x (—! <

25 1256

: x<

7405

1)]

5264
3 • ' - . i 1 146 1443 6 14 4417 6651 0101
. 3 2127 5453 7 20 0000 0000 0001

cos...3147 li uu02 3067 0002 3155 01 3172 0000 0003
3150 06 3035 0002 0002 6 11 0003 0004 0003

1 05 0000 0000 3153 7 01 0003 7173 0003
sin... 2 11 0002 3067 0002 3160 27 4001 3156 3161

3 11 0002 0002 0004 1 11 0003 0002 0003
4 < u004 0000 0000 2 32 0000 0000 0000

1) Evaluation; 2) and.

Argument ’0002 = x; result '0003 = J sin x (J cos x accordingly);
initial instructions 3152 for | sin x and 3147 for | cos x.

Program 4

I x 1 Bbmnc.nemie ysinx

sin ...3264 04 0000 0002 3266
5 01 3035 0902 0002
6 04 0002 3042 3273
7 02 3035 0002 0002

3270 04 0002 3043 3272
1 02 3042 0002 0002

(— 2k < x < 2k) j

3272 02 0000 0002 0002
3 04 0002 3043 3275
4 02 3042 0002 0002
5 12 0002 3241 0002
6 04 0000 0000 3153
7 22 0003 0003 3146

1) Evaluation.

Argument *0002 = x/2tt; result ’0003 = i sin x; initial instruction

3264.
113

Program 5

^BMMHCJieHUe yCOSX

cos ...3217 05 0002 3042 3221
, 3220 06 3035 0002 0002
1 1 05 0002 3043 3237

2 06 3042 0002 0002
3 01 3026 0000 0005
4 12 0002 3241 0002
5 06 3035 0002 0002
6 11 0002 0002 0004
7 26 0004 0000 0000

3230 01 3172 0000 0003

(— 2* < x < 2<t)
3231 11 0003 0004 0003

2 01 0003 7173 0003
' 3 27 4001 3231 3234

4 11 0003 0002 0003
5 14 0005 0003 0003
6 32 0000 0000 0000
7 01 0000 0000 0005

3240 04 0000 0000 3224
1 04 0000 0000 0001

1) Evaluation of.

Argument '0002 = x/2?r; result *0003 = i sin x; initial instruction
3217.

Evaluation of In x is also accomplished on the basis of a polynom­
ial of best approximation in the following manner.

The function In x is evaluated by means of the formula
In x = A1 log2x,

where M = 0.6931 471 806 = ’3051 is the conversion modulus between base-
two logarithms and natural logarithms;

logax 4 (Ctx -f- CaT9 4- C3t6 4- C4t’);

X — I
’ “ x -t- I ;

C, - 0,721 347 518 185;
Ct « 0,240450 190571;
C3 - 0,144 146085 514;
C4- 0,108564 937823.

r iThis polynomial ensures evaluation of log^ x on the segment [‘7,

with an accuracy of within e = o.ooo000000005.
For x = < 1/y/2 an n is selected so that

4? < </2fx < 1,
» i

and the relationship

Inx — A1log2x = —

Is used. Since when —! <x<—L— we have n < 21 log, x| < n 4- 1. while (/2)n+i (>/ 2)"
| lnx| < | log2xj, then for x the scale factor 1/n + 2 is introduced for this
segment. The calculation is carried out Horner’s method:

4 (((C^5 4- C3) 4- C2) 4- Cj t.

Addresses 3112-3115 contain the coefficients C^, C^, C2, and C1, respec-
tively
Program 6

1 (BuqiiC4CHi<e Inx)

3112 01 5712 7226 4561
3 02 2346.6040 1441
4 03 6616 1114 4322
5 13 4252 1661 7650
6 01 3020 0000 0005
7 05 3070 0002 3123

3120 12 0002 3070 0002
1 01 0005 3011 0005
2 05 0000 0000 3117
3 12 3011 0005 0004
4 02 0005 3020 0006
5 12 0006 0005 0005
6 11 0002 3042 0002
7 02 0002 3042 0006

3131 12 0006 0002 0002
2 II 0002 0002 0006
3 12 0002 3043 0002
4 26 0003 0000 0000
5 01 3112 0000 0003
6 11 0003 0006 0003
7 01 0003 7113 0003

3140 27 4001 3136 3141
1 11 0003 0002 0003
2 11 0003 0004 0003
3 11 0005 3042 0005
4 02 0003 0005 0003
5 11 0003 3051 0003
6 32 0000 0000 0000

3130 01 0002 3042 0002

1) Evaluation of

Argument ’0002; function ’0003; scale factor ’0004; initial in­
struction 3116.

22Evaluation of y = -/a for 2 < a < 1 is performed in accordance
with the following scheme:

Un+i = Un 4-

* 1 (a \ .
△//n 2 \V ^n) *

* /

•Jo = 1.

115 -

Program 7
(evaluation of v/a)

...3163 01 oooo 3035 0003 3167 01 0003 0004 0003
4 12 0002 0003 0004 3170 05 3047 0004 3164
5 02 0004 0003 0004 1 32 0000 0000 0000
6 11 0004 3042 0004

Argument *0002 = a; result *0003 =^/a; initial instruction 3163.
To evaluate (l/4)e" for — 1 < x < 1, we use the continued frac­

tion

1 . _ I , 4 l<> x*
Tr ~ 4 ' I x 4 h7-

16 2 • iu+ x*
3 4 • 16*
I6+ x*

5 4 16*
16+ x*

7 4 • 16*
16+ x«

9 4 • 16*
16+ • x’

114- 16*
16+ 13

16

Program 8
(evaluation of l/4ex for —1 < x < 1)

e* ...3202 06 3025 3044 0004
3 01 0000 0004 0005
4 1) 0002 3201 0002
5 11 0002 0002 0006
6 12 0006 0005 0005
7 02 0004 3044 0004

3210 01 0004 0005 0005

Argument ‘0002 = x; result ’0003 =

3211 05 3044 0004 3206
2 02 0005 0002 0005
3 11 0002 3042 0002
4 12 0002 0005 0002
5 01 0002 3043 0003
6 32 0000 0000 0000

l/4ex; initial Instructions

3202.
To evaluate -larccosx and 4 arcsinx(— 1 <x < 1) we use the "dlgit-by-di-

71 *

git” method. We use the formula

? = <?o = y

to find the value of <p = arc cos x; here z0 — an, a,... a, ... (0<?„<2; the
a.^ are binary digits) .

If Xq = x > 0, then cos cp > 0, and cP is the angle In quadrant I,
- 116 -

l.e., 0 < <p < ?r/2; this means that z < 1, which is clear from the re­
lationship cp = tt/2Zq and aQ = 1.

If x < 0, then cos cp < 0 and cp is an angle in quadrant II, i.e,,
7r/2 x y 7T and zQ > 1. This means that a = 1.

We also compute x. , in order to determine the quadrant in which
2angle cp lies. If xi > 0, then = 0 and xi+1 = 2x^ — 1. If x^ < 0,

2 then a. = 1 and x., , = 1 — 2x..1 1+1 1
We compute (1/vr) arc sin x from the formula

arcsin x = ~ — arccos x.

Programs 9 and 10

1) Evaluation of; 2) and.

1 [Bbiqucjieniie arccos x h 1 / i -— arcsin x(—1 <, x<l)]
arcsin ... 3242 02 0000 0000 0004 3253 14 0003 0006 0003

3 05 0000 0000 3245 4 02 3042 0005 0002
arccos ... 4 01 0000 0000 0004 5 12 0002 3263 0002

5 01 0000 0000 0003 6 10 3042 0006 0006
6 01 3042 0000 0006 7 05 3012 0006 3247
7 11 0002 0002 0005 3260 31 0004 3262 3261

3250 31 0002 3251 3253 1 02 3042 0003 0003
1 02 0005 3042 0002 2 32 0000 0000 0000
o 05 0000 0000 3255 3 10 0000 0000 0001

Argument ’0002 = x; result ’0003 = (l/7r) arc cos x [(I/tt) arc sin x),
accordingly]; the initial instruction for (l/vr) arc sin x is 3242 while
for (1/tt) arc cos x it is 3244.
SUBROUTINES IN INTERCHANGEABLE BUILT-IN STORAGE (SSP)

The interchangeable built-in memory is realized in the form of
blocks, each of which bears a number from 1 to 5 and contains 100 oc­
tal (64 decimal) codes.

Block programs are so grouped that those subroutine complexes that
most probably will be required simultaneously in problem solution can
be inserted as needed. Thus, for example, programs of linear algebra
are located in blocks with different numbers so that they may be inser­

- 117 -

ted at the same time. After inclusion of the relative-transfer opera­
tion in the operation set of the "Kiev" computer, we can insert built-in
storage blocks in arbitrary sequence (here fixed addresses must be
left for constants alone).

As an example, let us describe two blocks of the interchangeable
built-in memory.
Block No. 1. Elementary Functions

One of the sets of block No. 1 (addresses 3300-3377) of the SSP
contain the following routines:

1. Extraction of square root (instructions 3300-3317) for values
of the argument in the range 0 < a < 1. Initial instruction 3300. As
usual, address 0002 contains the argument and address 0003 receives
the results.

2. Scalar product of two vectors (instructions 3200-3333). Initial
instruction 3320. Addresses 0002 and 0004 are vector specifiers; the
result is placed Into address 0003. The two vectors are given In the
form of a-sequences. In this chapter, we speak in all cases of sequen-
ces with processor operation +1).

^•3. Multiplication of square matrix by vector (instructions 3334-
3357). Initial address 3334. Location 0002 contains the specifier of
the a-sequence used to give the matrix by rows; location 0004 contains
the specifierxof'the sequence used to give the vector; location 0003

containp^rhe specifier of the vector result.
-x^4. Evaluation of (1/4) a^ (instructions 3350-3374). Initial in­

struction 3360. Since this routine uses the routine for In, we use
•0007 = a; *0010 = x; ‘0003 = (l/4)ax.

5. The last three addresses are used to stere constants; 3375
= 2“^^; 3376 = 0.4; 3377 = the constant for shifting by one address
(14-2"40).

118 -

Interchangeable Built-In Block No. 1

3300 01 0000 0000 0003 « 2 01 0004 3011 0006
1 05 0002 0000 3317 3 34 0002 0000 0007
2 01 3035 0000 0003 4 34 0006 0000 0010
3 16 0002 3035 3317 5 34 0005 0000 0000
4 01 3043 0000 0005 6 11 4000 0010 0011
5 05 3043 0002 3311 7 01 0003 0011 0003
6 12 0002 3043 0002 3330 01 0005 3011 0005
7 11 0005 3042 0005 1 01 0006 3011 0006

3310 05 0000 0000 3305 2 02 0007 3011 0007
1-12 0002 0003 0004 3 31 0007 3324 3146
2 02 0004 0003 0004 4 34 0002 0000 0006
3 11 0004 3042 0004 5 01 0002 4000 0007
4 01 0003 0004 0003 6 01 0006 0003 0005
5 05 3021 0004 3311 7 01 0002 3011 0010
6 11 0003 0005 0003 3340 01 0003 3011 0012
7 32 0000 0000 0000 1 01 0004 3011 0011

(x, y)... 3320 01 0000 0000 0003 2 01 oooo oboo 0015
1 01 0002 3011 0005 3 34 0010 0000 0013

4 34 0011 0000 0000 2 30 3026 3363 3116
5 11 0013 4000 0014 3 11 0003 0010 0012
6 01 0014 0015 0015 4 05 0012 0004 3370
7 01 0010 3011 0010 5 01 0012 0004 0012

3350 01 0011 3011 0011 6 11 0011 3065 0011
1 05 0010 0007 3343 7 05 0000 0000 3364
2 34 0012 0000 0000 3370 12 0012 0004 0012
3 01 0015 0000 4000 1 01 0000 0012 0002
4 01 0012 3011 0012 2 30 3026 3373 3202
5 01 0007 000b 0007 3 11 0003 0011 0003
6 05 0012 0005 3341 4 05 0000 0000 0001
7 32 0000 0000 0000 5 00 0004 0000 0000

la* ... 3360 01 0000 3035 0011 6
7

06 3146
00 0000

3146
0000

3146
0014

1 01 0000 0007 0002

Block No. 4. Runge-Kutta Method
One of the units of block No. 4 of the interchangeable built-in

memory (addresses 3600-3677) is designed to contain routines for solving
systems of ordinary differential equations by the Runge-Kutta method
with constant integration interval.

The Runge-Kutta method, as applied to a system of n ordinary dif­
ferential equations

'/i........ Un) (i = 1.2.............«)
consists in evaluating successive values of the functions y^j, where
k is the number of the point and 1 the numtier of the equation (func-
tlon), by means of the formulas:

119

hKu ftK2l ,l^3t , .
,= </*■ / + — + — + — + —»

K |i — ft (x, .. •> //*») •
Ka< = ft (x 4- y, y*» + y Ku, . ••• Ukn + y K^,

Ka — fi(x 4* y» f/*i + y Ku, • • •• Ukn 4" y Kjn)»
Ku — fi (•’* 4* h, yki 4- 4Kai» • • •» Ukn 4* ^Ktn^i

(20)

where h Is the interval of Integration.
At each step, as follows from Formulas (20), the vtLues of the

right sides are computed four times.
The Initial information — the number n of equations and Initial

values of the functions — are given as an a-sequence:

'a = n;
'(a -f- 1) = y01;
'(« 4-2) = z/ot;
'(« -i- n) = y^.

whose governing address is stored in address II of an assembled word
(NK)

'3005

In addition, the following are specified in assembled words:
’3000 = 2h, twice the integration Interval;
*3001 = xQ, the initial value of the Independent variable;
’3002 = xmax, the final value of the independent variable;

'3004 m

Here the number m indicates readout (printout) of the calculation re­
sults at each mth point of integration.

As working locations, we use addresses 0004-0043, as well as the
4n addresses representing the extent of the a-sequence, where the first
n addresses are used to store the current values of the right sides of
the equations, the next n addresses for the values of the arguments for

120

them, and the last n addresses for sequential calculation of the quan­
tities 2hK<i,e

'(a 3n -f- 1) = 2/1 • Ku i
'(a 4" 3n 4- 2) = 2/1 • Ki2t

'(a 4- 4n) = 2/1 • Kin-

(/' = 1. 2. 3, 4)

The initial address of the program is 3600. The current value of
the independent variable for computation of the corresponding values of
the right sides is given in address 0031. After calculation of the
right sides fi, linkage to the Runge-Kutta routine is accomplished at
Instruction 363^.

The initial address of the subroutine for calculating the right
sides is given as the constant of the assembled word

3003

and ’3677 equals the check sum for the given SSP block. On the basis of
address 3200 (instruction 3615) control is transferred to the group-
transfer and printout subroutine.
Program for Runge-Kutta Method

'3000 - 2/1

2 11 3042 3075 0037
3 34/3005 0000 0013
4 01-3005 4000 0033
S/6l 0033 4000 0016
X 01 (MH 6 4000 0035
7 01 0036 0000 0017

10 01 0036 0900 0020
1 01 3001 0000 0031
2 01 3004 0000 (K)32
3 01 0000 00O0 0022
4 01 0000 0000 0021

/
3634 01 0035 3011 0027

5 01 3005 3011 0024
6 02 0036 0020 0020
7 01 0020 0017 0017

3640 04 0017 0037 3642
1 02 0017 0037 0017
2 31 0027 0000 0000
3 11 4000 0017 0023
4 34 0024 0000 OO(X)
5 01 4000 0023 4000
6 01 0027 3011 0027
7 01 0024 3011 0024

3650 04 0024 0033 3642
1 16 0022 3042 3673
2 02 0040 0021 0021
3 01 0021 0022 0022
4 11 3(400 0022 0041
5 01 (X)41 (X)34 0031
6 01 0035 3020 0042
7 02 0026 3011 0026

3660 02 0025 3011 0025
1 02 0027 3011 0027
2 34 0027 0000 (XKX)

121

5 04 3002 0031 3200
6 01 0031 OuOO 0034
7 01 3005 3011 0024

3620 01 0033 3011 0025
1 01 0016 3011 0026
2 34 0024 0000 0023
3 34 0025 0000 0000
4 01 0023 0000 4000
5 34 0026 0000 0000
6 01 0000 0023 4000
7 01 0024 3011 0024

3630 01 0025 3011 0025
1 01 0026 3011 0026
2 04 0024 0033 3622
3 05 0000 0000 3003

3 11 0022 4000 0023
4 34 0026 0000 0030
5 34 0025 0000 (XXX)
6 01 0023 0030 4000
7 04 0042 0027 3657

3670 01 0026 0013 0026
I 01 0025 0043 0025
2 04 0000 0000 3003
3 02 0032 3011 0032
4 01 3005 OuOO 0002
5 30 0032 3612 3354
6 05 0000 0000 3013
7 Block check
sum

STANDARD ROUTINES
Standard routines and subroutines are formed with allowance for

a standard method of specifying the input and output information for
them. As addresses for storing input and output information (arguments
and results) we use addresses 0002, 0003, 0004. For routines processing
complicated blocks (vector-sequences, etc.), the information is speci­
fied as a-sequences, for which addresses 0002 and 0004 serve as speci­
fiers. The result is stored in address 0003. This is either the address
of a variable if the result is a variable (for example, in a program
for scalar multiplication of vectors), or a specifier, if the result
is in turn a block (for example, in a routine for matrix multiplication).

Standard routines are formed in symbolic addresses; exceptions are
formed by routines in Interchangeable built-in storage, which are form­
ed in absolute addresses. Calls for subroutines that do not in turn
contain calls to subroutines (of lower level) are accomplished on the
basis of a conditional-jump instruction transferring control to a sub­
routine of the form

K 30 3026 K + I Al

(with linkage based on the link register). Here M is the Initial ad­
dress of the subroutine; the first address specifies the address of

- 122 -

the quantity whose sign governs the transfer of control to the subrou­
tine (or the address of some negative constant, for example, 3026, if
there is to be an unconditional jump to the subroutine). Here before
the instruction calling for the subroutine the addresses of the argu­
ments or their specifiers are transferred, respectively, into addresses
0002, 0003, 0004.

Let us list the routines developed as of 1 January 1962. In all
cases, unless otherwise specified, linkage to subroutines is governed
by the link register.

Subroutine for conversion from the binary system Into the decimal
system. In contrast to the corresponding subroutine stored in fixed
built-in memory (see Table 2), this subroutine does not use group oper­
ations (which is necessary, for example, when the machine is operating
in the simulated floating-point mode).

The program takes 9 instructions; argument ’0002; converted num­
ber ’0003; working addresses 0002-0005.

Subroutine for converting Integers from the binary system into
the decimal system. The binary integer, written into address II of loca­
tion 0002 is converted into the decimal system and printed out. Group
cperatons are not used; linkage is governed by the link register; work­
ing addresses 0002, 0003; with the necessary constants, the program
takes 23 instructions.

Subroutine for group conversion from binary system to decimal sys­
tem. A group of numbers specified as an a-sequence with governing ad­
dress 0002 Is converted and printed out. The content of the a-sequence
is stored. The subroutine uses group operations; working addresses
OOO3-OOO7; number of instructions, 18.

Subroutine for group conversion and printout using group-printout
mode. As in the preceding subroutine, the converted numbers are trans­

123 -

ferred Into an a-uequence which may also coincide with the initial a-
sequence. The governing address of the second sequence is 0003. The
working addresses are 0003-0011; group operations are used; the number
of instructions is 26.

Subroutine for correcting program errors. Into some a-sequence,
the correct codes are transferred, together with their addresses in
the following sequence: first code, its address; second code, its ad­
dress, etc.

In assembly location 3006, the governing address of the sequence
Is stored in address I; the last address is stored in the second (i.e.,
in NK 3006 there may be an instruction for loading an a-sequence — a
zone of corrections.

Linkage is governed by the link register; number of instructions,
10; working addresses 0002-0005; F operation is used.

I
Subroutine for calculating sine for —1 < x < 1 using Taylor series.

Accuracy, 9-10 digits; working addresses, 0004-0011; group operations
are not used; ’0002 is stored; number of instructions, 20.

Subroutine for computing tangent (cotangent). For x < tt/4, the
subroutine computes tan x, for x > tt/4, it calculates the value cot x.
The result is transferred on the basis of two addresses:

•0004 = (+0, if program yields tg x;-0, if program yields ctg x

No group operations are used in the program; number of instruc­
tions, 21; '0002 is stored; working addresses, 0005-0007.

Subroutine for calculating arc tan x for —1 < x < 1. A polynomial
of best approximation is used:

arctgx --- V C2/1 ■iA.-'+l;

- 124 -

Cl ~ 0,9999993329; C, =—0,1390853351; Cl3 = 0,0218612288;
C, = —0,3332985605; C, = 0,0964200441; C13 = —0,0040540580.

C, = 0,1994653599; Cn = —0,0559098861;

Number of instructions, 17; '0002 stored; group operations are
used.

Subroutine for calculating In x for 0 < x < 1. The program takes
34 instructions, and differs from the corresponding built-in program
only in being more accurate.

Program for evaluating nth-order determinant. The determinant ele­
ments are given as an a-sequence with specifier 0002. The dimension of
the determinant is stored in accordance with the governing address ’a =
= n. The result is delivered in the form of the content of two address
ses: for *0002 < 0, the value of the determinant equals ’OOO3/’OOO4,
while for ’0004 > 0, it equals ’OOO3-'OOO4.

The maximum determinant order is 25; number of instructions, 121;
the F operation is used.

Subroutine for rectangular-matrix transposition. The information
for the routine is specified as an a-sequence of its elements, by rows,
and the size of the matrix is stored in accordance with the governing
address of the sequence. Address 0002 serves as the specifier for this
sequence. Address I of the sequence contains the number of lines, and
address II the number of columns. Transposition consists in writing a
column of the given matrix as a row of the transposed matrix in the
form of an a sequence with specifier 0003. The elements are stored In
the £-sequence in rows of the transposed matrix; the governing address
for P contains the number of lines, while address P + 1 contains the
number of columns of the transposed matrix.

The content of the a-sequence and the specifiers of the program
are stored; the F operation Is used; number of instructions, 18; work­
ing addresses, 0004-0011.

125 -

linear combination of vectors. The information for the program is
given as two sequences. The a-sequence gives the number of vectors,
the dimension, the elements of the first, the elements of the first,
the elements of the second, etc. (in the indicated sequence). The speci­
fier for this sequence is address 0003. The P-sequence indicates the
constants by which the vectors are to be multiplied. The specifier for
this sequence is address 0003. The result is placed into an a-sequence
for which the contents of addresses a and a + 1 are stored.

Number of instructions, 20; F operation is used; working addresses,
0002-0012.

Product of matrices and vector by matrix. The initial instruction
of the program for multiplying a vector by a matrix is instruction K +
+• 13# the initial instruction for multiplication of matrices is in­
struction K + 0.

The sequence of elements of the vector or the first matrix are
given as an a-sequence with specifier 0002, In the first case, the
governing address of the sequence contains its dimension; in the
second case it contains the number of lines, while the next address
contains the number of columns, following which we have the matrix
elements given by rows.

The second matrix is given in rows as a P-sequence with specifier
0004. The governing address indicates the number of rows and the next
address the number of columns of the matrix.

The result is obtained as a y-sequence with specifier 0003; the
governing address indicates the number of lines of the resulting matrix,
the next address the number of columns, followed by the elements of
the matrix 1^ rows.

A call to the routine is based on address 0001 (l.e., the link
Instruction is formed in location 0001). The input informatlcn 'to the

126 -

program is stored. However ’0002, ’0003, and *0004 are not stored. Num­
ber of instructions, 35; working addresses, 0002-0014; the F operation
is used.

Product of matrices and vector by matrix with scaling (variation

The initial instruction of the program for multiplying a vector
by a matrix is K + 0, for multiplication of a matrix by a matrix, K + 2.
The input Information is given, as for the preceding program, while the
output information is given as a Y-sequence with specifier 0003. Ad­
dress I of the sequence contains the number of rows of the resultant
matrix, while address II indicates the number of columns. There next
follow the elements of the matrix and its scale factor:

’Y = m, number of matrix elements;
• (Y + 1) = n, number of matrix columns;
'(Y + 2) = a11# first element of matrix;
‘ (Y + 3) = scale factor on first matrix element, etc.
The output information for the program is stored; *0002, ’0003,

•0004 are not stored; the F operation is used; number of instructions,
43; working addresses, 0002-0015.

Product of matrixes and vector by matrix with scaling (variation
II). The initial instruction for the routine for multiplying a vector
by a matrix is K + 0, for multiplication of a matrix by a matrix, K + 2.
In contrast to the preceding program, a general scale factor is intro­
duced for the resultant matrix applying to all of its elements; it is
given in accordance with address 0016. The F operation is used; number
of instructions, 48; working addresses, 0002-0017.

Scalar product of vectors. The vectors are given in the form of
a-sequences with governing addresses with 0002 and 0004. The results
are given in address 0003. The F operation is used; number of instruc-

127 -

cions, 12; working addresses, 0005-0007.
Multiplication of square matrix, transposed to given matrix, by

vector. The information on the matrix is given by rows in the form of
an a-sequence with governing address 0002; information on the vector
Is given on the basis of the specifier 0004. The governing address of
the vector result is 0003. The F operation is used; number of Instruc­
tions, 21; working addresses, 0005-0015.

Multiplication of square matrix by vector. Address 0002 is the
specifier of the matrix, given by rows; *0002 equals the dimensions of
the vector; 0004 Is the specifier of the given vector; 0003 is the spe­
cifier of the vector result (blocks for the given vector and vector re­
sult will be different). The F operation is used; number of instruc­
tions, 20; working addresses, 0005-0015.

Evaluation of Bessel functions In(x) for fractional argument and
Integral index

M “ 2"n! b 2 (2n + 2) + 2 - 4 (2n + 2) (2n + 4) ••*} ’

nere ’0002 is the function argument; ’0004 is the index of the Bessel
function (given in address II); *0003 is the result. Working addresses,
0004-0013; group operations are not used; accuracy, 8 decimal digits;
number of Instructions, 41.

Evaluation of definite Integrals by Simpson's rule for even number
n of divisions (fixed-point mode). The input information takes the form
of the following a-sequence with specifier 0002: 'a = n, number of in­
tervals of division (even number); '(a + 1) = h, integration interval;
•(a + 2) = y$, ..., '(a + n + 1) = yn, values of integrand function at
points of division of interval of integration. The formation of the con­
tent of the a-sequence is accomplished by the main program. The result
is the content of address 0003. Number of instructions, 39; working

128 -

addresses, 0004-0014.
Evaluation of definite integrals by Simpson's rule combined with

trapezoidal rule for odd number of divisions (flxed-point mode):

y-yi+y*;
Hi = 4 + 2yt + ... + 4yn—2 + 1>);

Vt “ 4
The information is specified as in the preceding program. Number of
instructions, 48; working addresses, 0004-0014; result, '0003.

Transposition of square matrix. Here 0002 is the specifier for the
initial matrix, given by rows; 0003 is the specifier of the transposed
matrix (also obtained by rows). Number of instructions, 17; working
addresses, 0004-0012; '0002, '0003 are stored.

Product of vector by rectangular matrix. The vector elements are
given in an a-sequence ('a = n) with specifier 0002. The matrix is giv­
en by rows in a P-sequence ('£, number of rows; '(P + 1), number of
columns) with specifier 0004. Here 0003 is the specifier for the y-se­
quence, which contains the elements of the resultant vector ('y equals
the dimension of the vector). Number of instructions, 22; F operation
is used; contents of '0002, '0003, *0004 are stored, as is all of the
input information; working addresses, 0005-0013.

Matrix inversion by method of A.P. Yershov (fixed-point mode).
The initial Information — the general scale factor and elements of tne
matrix by rows — is given in the form of a sequence with specifier 0002.
Into assembled word 3000, the order of the matrix Is introduced into
address II. Several matrices of the same order may be Inverted simul­
taneously. The number of matrices is specified in address III of as­
sembled word 3001.

The Inverted matrices are given (in the decimal system) by columns
(with spaces between columns). The scale factor is printed out first.

- 129 -

Number of instructions, 48; the F operation Is used.
Determination of the real roots of a polynomial of degree n. The

region of definition of the roots is determined by the program in accord­
ance with the formula

where A max|o4| (I — 0,1... n); a$ is ^he coemcient on the hlghest-order
' term.

The method of samples is used. A root-extraction indicator can be:
a) a change in sign of the function;
b) a change in sign of its derivative near the ox axis.
Calculations are carried out In the floating-point mode. Number of

instructions, 319. The coefficients of the polynomial are first divided
by K, where A < K < 10A, and they are given in a sequence of decreasing
powers (those equal to zero are coded by zeros). The following are giv­
en in assembled words: ’3000 = n, degree of polynomial (in address I);
*3901 = m, number of polynomials (in address I).

The result is printed out in floating-point mode (exponent, man­
tissa) . Accuracy, 4-5 digits.

Calculation of real characteristic roots and their corresponding
vectors by iteration method. The characteristic root of greatest abso­
lute value is found:

A'yi - ; A’yL-i - y^

where A is the initial matrix; A’ is the transposed matrix; yQ, y^ are
arbitrary zero approximations to the eigen vectors.

The characteristic root of matrix A is X^, for which
| X' I | < •»

130 -

where e is small.
The vectors yi# y£ corresponding to the given X1 will be the eigen­

vectors of matrices A and A1, respectively.
Matrix A1 - A — x[y, y•] has the same characteristic root as ma­

trix A, except for the first characteristic root X, already computed.
The corresponding characteristic root of matrix A1 will equal

zero. The characteristic root of matrix A.^ having greatest absolute
value, and equaling the second characteristic root of matrix A, is al­
so computed by the iteration method. The same is true of the correspond­
ing eingenvectors. Here [y, y‘] represent the matrix product

o,6,atbn \

... Qnbn •

The characteristic roots of several matrices of the same order
may be computed simultaneously with no halt. The results are printed
out in the following order: MXj, the scale factor; Xp the first char­
acteristic root; space, etc.

The program may also be used to compute multiple roots if the
zero approximation can be given. It is possible to begin with one of
the four zero approximations:

1,1,1.......... 1
1, 0, 0...........0
0, 1. 0..........0
1.0,0.......... 0, 1

The choice of initial vector is determined by address I of NK 3001.
If none of these zero approximations leads to a result, the zero

vectors must be given as an a-sequence, introduced after the initial
matrix. Here it is necessary to omit construction of the zero approxima­
tions. The program uses subroutines for scalar multiplication, multipli­
cation of a matrix by a vector, and multiplication of a transposed ma­

- 131 -

trlx by a vector.
The order of the matrix is given in address II of NK 3000 (in the

octal system); *3001 = e (accuracy of approximation); *3002 = m — 1,
where m — 1, where m is the number of variations.

Number of instructions, 268; maximum order of matrix, 23. The pro­
gram was written by V.S. Morornaya.

Finding minimum characteristic root of matrix by method of steep­
est descent. The calculation formulas are:

Ax « XBx;
i !£' •m = Bxm)'

X/n-f-l — X,n

=» Axm — >

Information on the matrices is given in the form of an a-sequence
which contains: the order of the matrix A; Its elements in rows; the
order of matrix B; its elements in rows. As the zero approximation, we
use a vector with unit components. The order of the matrix and number
of variations is given in assembled words.

The program yields a characteristic root with scale factor and the
components of the corresponding eigenvector. If the programmer so wish­
es he can arrange to have all intermediate Iterations printed out (by
setting a switch at the console).

The program can be used for the case of a real minimum root. The
maximum order of the matrices is 24 (unless external storage is used).
The program was written by V.S. Motornaya.

Solution of a system of linear algebraic equations by the square­
root method. The information on the problem — order of the matrix, the
matrix in rows, the right sides — is given in the form of an a-sequence
with specifier 0002. The result is obtained In the form of an a-sequence
with specifier 0003. The program runs with floating scale factor. Number

- 132 -

of instructions, 282.
Solution of system of linear algebraic equations by Seidel method.

The information is given as in the preceding program. The program is
realized for the interchangeable built-in memory (64 instructions).

Solution of systems of linear algebraic equations for matrices
with incomplete filling by Lopschits method. The Initial information
on the matrix of coefficients is given in the form of two sequences:
an a-sequence of scale factors and a ^-sequence of coefficients. The
scale locations contain: in address I, the number of the line of the
nonzero matrix element, in address III, the number of its column, and
in address II the address of the element Itself. In the ^-sequence of
coefficients, there are coded only different and nonzero matrix ele­
ments .

The governing elements of the a- and P-sequences are given in ad­
dress II of the assembled words 3000 and 3001, respectively.

Number of instructions, 83; working locations, 0001-0012; F oper­
ation is used. The program was written by Ye.I. Mikhaylova.

Mean-level wind prediction. The initial Information is the matrix
of Initial data for the baric topography. The output information is
the wind-speed vector matrix. To solve the corresponding system of par­
tial differential equation, a special method of numerical solution has
been developed. Number of instructions, 587. Input matrix, 23 x 19.
Group operations and standard routines are used together with constants
of the built-in memory. The computational method and the program were
developed by Yu.S. Fishman.

Solution of Poisson equation for Dirichlet problem for a rectangu­
lar region by the method of block iteration using the driving method.
Assembled words are used for the information: '3000 = n, number of
points on x axis; '3001 = m, number of points on axis; '3001 = m,

133 -

2 number of points on £ axis; ’3003 = h , where h is the grid spacing on
p the x axis; ’3004 = £ , where £ is the grid spacing on the axis;

‘3005 = e Is the prescribed accuracy. When only high-speed storage is
used, mn < 360; the program may be used to solve the Laplace equation
for a grid mn < 720. Number of instructions, 81. The program was writ­
ten by Q.I. Visnyuk.

Solution of Laplace equation for rectangular region by method of
block iteration using driving method (with memory-location reduction
using a method proposed by I.N. Molchanov; see DAN UkSSR, No. 3, 1962).
The following information is given by means of assembled words: ’3000 =

2 2= h , where h is the grid spacing on the x axis; ’3001 = £ , where £
is the grid spacing on the £ axis; ’3002 = e, the prescribed accuracy;
’3003 = m, number of mesh points on x axis; *3004 = n, number of mesh
points on x axis. Memory space is conserved owing to the fact that the
values of the function are given only for even lines of the grid. High-

2 speed memory permits solution of equations for a grid mn < 3Jj .
Number of instructions, 3O5« The program was written by G.I. Vizn-

y Vik.
Algorithm for obtaining pseudorandom numbers with uniform distri­

bution law. The method of residues is used. Number of instructions,
132.

Algorithm for laying out rectangular parts on rectangular sheets.
The algorithm developed yields (as compared with manual part lay-out)
a savings of 2% in metal. The over-all number of parts may reach 100;
up to 12 parts may be laid out on one sheet. Number of Instructions,
300. The algorithm and program were developed by G.Ya. Mashblts.

Calculation of correlation functions for large numerical blocks
(using magnetic drum). Number of instructions, 150. The program was
written by E.K. Yadrenko.

134 -

Realization of random process with correlation function .• C0!s
Number of instructions, 250. The program was written by E.K. Yadrenko.

Solution of transportation problem by Lur1ye-Oleynik method. The
high-speed memory and one magnetic drum of external storage are used
completely. The cost matrix may have dimension m x n up to 3000. The
program was written by S.B. Branovitskaya.

Design of highway and railway profiles with fixed abscissas of
points of discontinuity — stakes (with allowance for enginerring re­
quirements) . Information on up to 20 km of route is loaded at one time
into computer storage. The method of successive analysis of variations,
developed by V.S. Mikhalevich and N.Z. Shor is used. The program was
written by A.N. Slbirko.

Program for reading out alphanumeric Information on screen of
cathode-ray tube. The program was written by V.K. Yeliseyev.

Translator program for general-purpose control computer (UMShN)
using the address language as source language; the program is based on
the principle of element-by-element decoding of the input information.
The PP compiles the working programs only for fixed-point operation.
The PP has a length of about 290 address lines or 600 "Kiev" computer
instructions. The PP processes the following address formulas: trans­
fers, predicate formulas, entrance formulas, unconditional-jump labels,
nonstandard formulas written in UMShN codes, printout formulas, and
halt formulas.

After the translator program processes the initial Information in
each zone, the problem program is printed out in UMShN computer
language; the instructions of the working program are printed out with
absolute numbers. The program was written by R.A. Godz ’, G.A. Polish­
chuk, A.I. Stiranka, under the guidance of Ye.L. Yushchenko.

Hydraulic design of water-and gas-supply systems. The computer
135 -

solves a nonlinear system of hydraulic computations for water- and gas­
supply networks. It is possible to design networks consisting of k
sections; at each end of the system there are a maximum of m sections.
If the data is to be stored in high-speed memory, it is necessary that
2k + 3m < 808. Number of Instructions, 261. Time required for calcula­
tions for a system of 250 sections, 30 min. The program was written
by V.S. Kvakush in accordance with a method suggested by B.N. Pshen­
ichny y.

Realization of algorithm for determining pouring time for a
Bessemer converter for a given metal carbon content. Current information
on the course of the converter Blow is furnished by sensors installed
at the Bessemer mill of the Dzerzhinskly Plant (in Dneprodzerzhinsk);
the information is converted to digital form by a special device, aver­
aged, and transmitted over a telegraph channel to the receiving appar­
atus, installed in the computer room for the "Kiev" computer. A special
decoder converts the telegraph signals into binary code and Introduces
them into a storage unit of the "Kiev" computer.

The program determines the instant of pouring, and a control sig­
nal is transmitted by telegraph channel to the mill.

The work was carried out by A.I. Nikitin and others led by V.M.
Glushkov, K.S. Garger, and L.N. Dashevskiy.

Determination of optimum process regime in a carbonization column
at a soda combine. The solution is similar to that for the preceding
problem for a controlled object — a soda combine (at the city of Slav­
yansk) . The work was guided by B.N. Malinovskiy and A.B. Tyutinnikov;
I.A. Yanovich and R.S. Tsvlgun were project executives.

Traction calculations for a locomotive. Information is specified
for a rectified path profile in the form of lengths of elements and
reduced grades. The program gives the running time and speed of the

- 136 -

locomotive over elements and over runs, the electric-power consumption,
engine overheating, mechanical work, and other intermediate data. Cal­
culation time is 5 min per 100 km of route. Number of instructions,
400.

The method and algorithm were developed by N.Z. Shor and A.A.
Alekseyev.

Solution of systems of linear algebraic equations by the method
of conjugate gradients with minimization of the norm for departure of
the approximate solution from the exact solution (see V.Ye. Shamanskiy,
’’Ukrainian Mathematical Journal,” No. 1, 1962). For matrices with in­
complete filling, scales are used, and only the nonzero elements are
coded.

If n is the order of the system and m the number of nonzero ele­
ments, then for storage of the Information in high-speed memory, the
condition 6n + m < 673 must be satisfied. For matrices with complete
filling, n < 23. Number of instructions, 319. The program was written
by G.P. Pravotorova and M.F. Yakovlev.

Solution of systems of linear algebraic equations b^ the method
of conjugate gradients with minimization of the discrepancy norm. As in
the preceding program, scales are used for matrices with Incomplete
filling. For storage of the information in high-speed memory for a ma­
trix with Incomplete filling, the condition 6n + m < 608 must be satis­
fied, where n < 41 and m is the number of nonzero elements; for matrices
with complete filling, n < 21. Number of instructions, 370. The program
was written by G.P. Pravotorova and M.F. Yakovlev.

Solution of systems of linear algebraic equations with symmetric
matrix using the Improved Gauss method (see the sample program compiled
by PP-AK).

Solution of symstems of differential equations by the Runge-Kutte
- 137 -

(see the sample block of the Interchangeable built-in memory).
Solution of a parabolic partial differential equation witn bound­

ary conditions of the first kind. The heat equation and Boussinesq equa­
tion are solved for regions of arbitrary configuration (the form of the
equation is specified by a special characteristic). Information on the
type of region is specified with the aid of special logical scales.
The grid method is used with an explicit difference scheme.

The maximum number of grid points is 750. Number of instructions,
120. The program was written by V.F. Temchenko.

Approximation of functions of two variables by the method of least
squares (see A.S. Novik and V.Ye. Shamanskly, DAN UkSSR, 1902, No. 3).
The input Information is a table of values for a function of two varia­
bles f(x, y) at the mesh points of a rectangle. The program gives the
coefficients of an approxlmat ing polynomial of the form

n m
Pnm(X, y)= YiW-

r-0 l-O

Number of instructions, 408. High-speed memory permits construction cf
polynomials for which the following relationship holds:

’2 -t 1 + ? + 3 max (a. {3) + 2 max (m, n) + p(m + I) +

+ < 609.

where a is the number of mesh points along x; 0 is the number of mesh
points along y; m and n are the degrees of the polynomials In x and in
y, respectively.

The program was written by A.S. Novik.
Algorithm for obtaining pseudorandom numbers witn uniform distribu-

tion, based on the shift (13) and equality (17) operations. The numbers
have a period in excess of 500*000* Number of Instructions (with check
on randomness and uniformity conditions), 105. The program was written

by V.S. Kvakush.
Diameter and pressure calculations for gas- and water-supply net­

works . Let m be the number of elements, n the number of sections, and
k the maximum number of sections in one element. High-speed memory per­
mits calculations to be carried out when the condition m + 2n + 4k <
< 706 is satisfied. Number of instructions, 288. The program was written
by V.S. Kvakush in accordance with a method proposed by B.N. Pshenich-
nyy.

We shall now give an Incomplete list of algorithms realized on
the "Kiev" computer for simulating elementary processes of thought,
creation, etc.:

Algorithm for morphological analysis of the Russian language pro­
posed by I.A. Mel’chuk. Number of Instructions, 360. (See N.M. Grish­
chenko, ’’Problems of Cybernetics,” No. 6, 1961).

Algorithm for syntactic analysis of the Russian language proposed
by I.A. Mel1chuk. All of the high-speed memory and one magnetic drum
are used. The program was written by S N. Yakimenko.

Algorithm for learning to recognize the meaning of simple senten­
ces (see V.M. Glushkov, N.M. Grischenko, and A.A. Stogniy, Principles
of Construction of Learning Systems, Gostekhizdat UkSSR, 19^2). An idea
of V.M. Glushkov was used as the basis for construction of a self-per­
fecting system of algorithms which after communication of a certain num­
ber of N of randomly chosen phrases of given structure will correctly
recognize the meaning of any phrase of the same structure. The algor­
ithm end program were developed by A.A. Strognly and N.M Gritsenko.

Simulation of biological evolutionary processes. (See A.A. Letich-
evskiy, Principles of Construction of Learning Systems, Gostekhizdat
UkSSR, 1962). The program algorithms were developed by A.A. Letichev-
skiy and A.A. Dorodnitsyna under the guidance of V.M. Glushkov.

139 -

Algorithm for learning to recognize elementary geometric figures
(see V.M. Glushkov, V.A. Kovalevskiy, and V.I. Rybak, Principles of
Construction of Self-Perfecting Systems, Gostekhizdat UkSSR, 1962).

Correlation method of pattern recognition. The authors of the pro­
gram were V.A. Kovalevskiy, V.K. Yeliseyev.

Glushkov algorithm for synthesis of automatic device on the basis
of event presented to it (See V.M. Glushkov and A.A. Storgnly, "Computer
Mathematics and Mathematical Physics," 1961, No. 3).

Minimization of automatic devices using Aufenkamp-Khon method (See
A.A. Stognly, "Computer Mathematics and Mathematical Physics," 1961,
No. 3). The program was written by V.P. Klimenko.
PROGRAM REALIZATION OF FLOATING-POINT MODE ON "KIEV" COMPUTER
General Characterization of Simulating Routine (MP)*

The determination and matching of scale factors in the preparation
of problems for fixed-point computers frequently involves difficulties,
since in the realization of various programs sequences of operations
are performed for which the maximum values of input and output quanti­
ties cannot be subjected to any restrictions. In many cases, each new
problem gives rise to its own method of scale-factor calculation and
as a result scaling becomes an art, unamenable on the whole to stand­
ardization. Thus in order to increase the effective speed of a fixed-
point general-purpose computer we should include in its operation set
special operations simplifying the program implementation of the float­
ing-point mode. Of these operations, together with logical operations
and a comprehensive set of control-transfer operations, an important
role Is played in the "Kiev" machine by the normalization operation.

In the development of the algorithms for program realization of
the floating-point mode in the "Kiev" computer, the alm was to create
conditions such that it would be possible to write a program in fixed-

140 -

point mode while its actual realization could take place in the floating­
point mode. Such algorithms came to be called simulation algorithms,
since they simulate by program means the operation of the missing elec­
tronic circuits which the computer would need to realize floating-point
operations. The admissibility of constructing simulating algorithms
follows from the existence of an accurate description of the rules for
transforming codes into floating-point mode (for the selected coding
method) on the one hand, and from the universality of the computer it­
self, on the other.

The fundamental tendency of the present version of the MP consists
in minimizing storage space, in isolated cases at the expense of compu­
tational time.

The Initial data for the calculation is given in the form of a
sequence of numbers with a single scale factor, which is stored at the
end of the sequence. The numbers occupy one storage location each. The
seven lowest-order digit positions are used for exponents. When the
results are read out, one number is printed out on two lines (mantissa
and exponent).

Programs for fixed-point calculations are written in "Kiev" ma­
chine language, which is subject to several restrictions. This means
that the programmer, writing the program with the indicated restrictions
for fixed-point calculations may in the event of an unhappy choice of
scale factors go over to calculations with the aid of the MP, which
will solve the same problem in the floating-point mode.

Let us call computer fixed-point operation mode I and, correspond­
ingly, floating-point operation mode II. Then if in writing a program
we use the set of "Kiev" machine operations given below, to solve a
problem in mode II it is sufficient to set up in address II of NK 3000
the number of the first instruction of the working program and transfer

141 -

control to location 3300 (to the beginning of the MP).
A practical check on the simulation system, using several problems

including specially selected problems, with allowance for statistical
data on the frequency with which various operations are employed in the
solution of problems of computational nature, carried out in both modes,
showed that the rate of program execution decreased by roughly a factor
of 10 in mode II.

The program was Implemented in the form of an interchangeable
built-in memory (256 codes). The high-speed memory remained completely
free except for the first 24 locations (0001-0032).
OPERATION SET FOR MP

The developers of the MP kept in mind that in the floating-point *7
mode it would be necessary to solve problems of peculiarly computation­
al nature. Thus fundamental attention was devoted to achieving minimum
use of the high-speed storage by the simulating program together with
a high rate of execution of its arithmetic operations. In this connec­
tion, the logical possibilities of the computer were somewhat reduced,
which is reflected in the fact that several operations may not be used.
Still we should point out that the logical operations admitted for
mode II are executed fairly rapidly and the rate of program implementa­
tion for the solution of problems of computational nature rises sharp­
ly with an increase in the number of logical operations used.

For mode II, the operation set of the "Kiev" computer Includes
the following operation: addition (01), subtraction (02), Instruction
addition (03)> subtraction of absolute values (06), cyclic addition
(07), multiplication with rounding (11), division (12), logical shift
(13), logical addition (14), logical multiplication (15), transfer of
control on equality (16), addition modulo 2 (17), load numbers (20),
load Instructions (21), readout (printout) (22), call to external mem-

- 142 -

ory (23, 24, 25), transfer control on sign of number (31), halt (33),
read on basis of specifier (34), normalization (35).

The simulating program does not accept Indicators of address modi­
fication. Thus, program segments making use of modification must not
be Included in the simulation mode. This does not, however, mean that
use of the A-register is completely excluded in mode II. The A-register
may be used In connection with the F operation (34) to reduce the rank
of an address and to form control by iteratIve-type loops. In view of
this, in programming schemes for block scanning, it is necessary to
make use of the F operation.

Structure of Simulation Program. The simulation program (MP) is
similar in structure to the algorithm for element-by-element decoding
of address functions given in Chapter 3. Using an algorithm called the
operation commutator, the simulating program extracts tne code for the
next Instruction to be simulated, and uses this as the basis for trans-
ferlng control to the corresponding subroutine. Here nonsimulated oper­
ations are executed directly (in fixed-point mode).

Instruction Commutator (instructions 3300-3316, 3557-3573)

3300 01 0000 3621 0026
1 01 0000 3622 0027
2 02 3000 3011 0014
3 14 3050 3026 0012
4 01 0014 3011 0014
5 34 0014 0000 0011
6 15 0011 3025 0013
7 16 0013 3600 3430

3310 16 0013 3045 3333

2 31 0000 0010 0000
3 13 3604 0011 0014
4 34 0014 0000 0014
5 31 0014 3326 3330
6 15 OOH 3023 0014
7 31 0000 3305 0000

3330 13 3624 0011 0011
1 15 0011 3023 0014
2 31 0000 3305 0000

3557 16 0013 0426 3510
3560 16 0013 0427 3564

1 16 0013 3044 3333
2 16 0013 3050 3461
3 16 0013 3601 3333
4 16 0013 3602 3323
5 16 0013 3603 3317
6 31 0000 3557 0000
7 01 0011 0000 0010’

3320 01 0014 30)1 0014
1 34 0014 0000 0011

1 30 3026 3562 0011
2 16 3026 0013 3630
3 31 0000 3304 0000
4 13 3624 0011 0017
5 15 0011 3032 0021
6 14 0021 3574 0021
7 01 0021 0000 0011

3570 31 0000 3561 0000
1 15 0017 3023 0014
2 02 0014 3011 0014
3 32 0000 0000 0000

- 143 -

Simulation of Addition-Type Operations
The first group of operations consists of addition (01), subtrac­

tion (02), and subtraction of absolute values (06), which are simula­
ted by a single subroutine. To execute these operations, the machine
transfers the operation arguments into locations 0020 (first component)
and 0015 (second component). The subroutine separates the mantissas
from the exponents: 0021 — mantissa of term I; 0022 — exponent of
I; 0023 — mantissa of term II; 0024 — exponent of term II; it then per­
forms the operation. Here the number exponents are equalized, and the
operation is performed on the mantissas. The result of the operations
is normalized, the mantissa is combined with the exponent in a single

* location, and transferred in accordance with address III of the simula­
ted instruction. If the exponents are equal or their difference exceeds
tne number of additional shifts, i.e., the operation result, to within
the sign, equals one of the components, exponent equalization Is skip­
ped in order to save time, and tne result is transferred directly ac­
cording to address III of the simulated instruction. Running of the
program is affected by the setting of the overflow switch. This makes
it possible to make the computational process automatic in case of pos­
sible overflows of the digit format.
Subroutine for Addition-Type Operations [addition (01), subtraction
(02), modulo subtraction (06)]

3333 14 0013 3613 0025 5 31 0016 3346 3410
6 05 0016 3607 33524 13 3624 0011 0017

5 13 3604 0011 0016 7 34 0017 0000 0000
6 34 0011 0000 0015 3350 14 0000 0020 4000
7 34 0016 0000 0020 1 31 0000 3304 0000

3340 15 0020 3605 0021 2 02 0000 0016 0016
1 15 0020 3606 0022 3 31 0023 3354 3356
2 15 0015 3605 0023 4 13 0016 0023 0023
3 15 0015 3606 0024 5 31 0000 0025 0000
4 02 0022 0024 0016 6 15 0023 3035 0023

144 -

7 13 0016 0023 0023
3360 02 0000 0023 0023

1 31 0000 0025 0000
2 05 0022 3610 3365
3 33 0000 0000 0000
4 31 0000 3363 0000

3365 01 3012 0022 0022
6 11 0021 3042 0021
7 01 3042 0021 0021

3370 15 0021 3611 0016
1 16 0000 0016 3375
2 01 0021 3612 0021
3 31 0000 3375 0000
4 31 0000 3362 0000
5 15 0021 3605 0021
6 16 0021 0000 3446
7 34 0017 0000 0000

3400 14 0021 0022 4000
1 31 0000 3304 0000-
2 35 0021 0016 0021

3 01 0016 0022 0022
4 04 3012 0022 3370
5 34 0017 0000 0000
6 15 3C26 0021 4000
7 31 0000 3304 0000

3410 16 0000 0016 0025
1 05 0016 3607 3415
2 14 0000 0000 0021
3 14 0024 0000 0022
4 31 0000 0025 0000
5 31 0021 3416 3421
6 13 0016 0021 0021
7 14 0024 0000 0022

3420 31 0000 0025 0000
1 15 0021 3035 0021
2 13 0016 0021 0021
3 02 0000 0021 00T1
4 14 0024 0000 0022
5 31 0000 0025 0000

Simulation of Multiplication-Type Operations
The second group — the multiplication operation (11) and division

operation (12) — are also simulated by a single subroutine.
In multiplication, the exponents are added, and the result of mul­

tiplication of the mantissas is normalized. In division, the machine
checks to see that the denominator is not equal to zero and that divi­
sion can be performed. Where the first condition is not satisfied,
an automatic halt occurs. Here address 0023 will contain a zero. If the
mantissa of the divisor exceeds the mantissa of tne dividend, the ex­
ponents are subtracted and the mantissas divided (the operation is pos­
sible); in the opposite case, the mantissa of the numerator is first
shifted and the exponent Increased accordingly. As in the case of an
addition-type operation, when this routine is run, the mantissas are
separated from the exponents; the normalized result is stored accord­
ing to address III of the simulated instruction.

Running of the suoroutine is affected by the setting of the over­
flow switch.

- 145 -

Program for Multiplication-Type Operations (instructions 3430-3460,
3461-3505)

3426 22 0000 0000 0000
7 16 0000 0000 0000

3430 34 0011 0000 0015
1 13 3624 0011 0017
2 13 3604 0011 0016
3 34 0016 0000 0029
4 15 0020 3605 002
5 15 0020 3606 0022
6 15 0015 3605 0023
7 15 0015 3606 0024

3440 01 0022 0024 0022
1 02 0022 3611 0022
2 05 0022 3610 3445
3 33 0000 0000 0000
4 31 0000 3443 0000
5 04 3012 0022 3451
6 34 0017 0000 0000
7 14 0000 0000 4000

3450 31 0000 3304 0000
1 11 0021 0023 0021
2 05 0021 0000 3456
3 35 0021 0016 0021
4 01 0016 0022 0022
5 04 0000 0022 3376

6 34
7 14

0017 0000 0000
0000 0000 4000

3460 31 0000 3304 0000
1 34 0011 0000 0015
2 16 0015 0000 3363
3 13 3624 0011 0017
4 13 3604 0011 0016
5 34 0016 0000 0020
6 16 0020 0000 3477
7 1F 0020 3607 0021

3470 lu 0020 3607 0022
1 15 0015 3605 0023
2 15 0015 3606 0024
3 02 0022 0024 0022
4 10 0022 3611 0022
5 05 3610 0022 3363
6 04 0000 0022 3502
7 34 0017 0000 0000

3500 14 0000 0000 4000
1 31 0000 3304 0000
2 11 0021 3042 0021
3 01 0022 3012 0022
4 12 0021 0023 0021
5 31 0000 3370 0000

Number Loading and Readout in Mode II
For floating-point-mode operation, numbers are written in the fol­

lowing form: the lowest-order digit positions from the first through
the seventh are set aside for the exponent, arbitrarily represented as
a = p + 64, where £ is the actual exponent of the number. Since -64 <
< 63, the conventional exponents form a range ([0-127], while the num-

— fill 4- fi Qbers range correspondingly from 2 to 2 . An empty location is ta­
ken as zero. The 8-th through 40-th digit positions are occupied by the
mantissa. The 41st digit position is the mantissa sign.

For loading into the computer, numbers are represented in nonnor­
malized form in the range —1 < x < 1, i.e., in the form normaJly used
lor the "Kiev" computer. Numbers rot falling within the range (-1, 1)
are introduced in the following manner. All n numbers are divided by
a suitable number M and given in the form of an a-sequence whose last
position contains the number M-1. All-in-all, the sequence will contain

(n + 1) numbers. If M - 1, a zero is written in place of M~1. The numbed'
- 146 -

M may be chosen arbitrarily. It may be a power of 2, 10, etc.
The subroutine for loading numbers at the instruction "load num­

bers’’ (20) introduces the a-sequence of numbers in fixed-point form
with the chosen scale factor M, converts them into floating-point form
with allowance for the scale factor, and stores the converted numbers
in the same addresses. The address that had contained the factor M may
be used for other purposes.
Subroutine for Loading Numbers (Instructions 3630-3705)

3630 35 0000 0006 0000 7 16 4000 0000 3304
1 14 0000 0000 0017 3660 15 3605 4000 0004
2 15 0011 3023 0005 1 15 3606 4000 0005
3 15 0011 3023 0005 2 11 0011 3040 0006
4 11 0004 3040 0003 3 34 0006 0000 0000
5 02 0005 0003 0007 4 15 3605 4000 0022
6 11 0003 3040 0005 5 15 3606 4000 0010
7 14 0004 0005 0005 6 16 4000 0000 3702

3640 14 3630 0005 0004 7 12 0022 0000 4000
1 14 3050 3026 0005 3670 31 0000 3674 0000
2 30 3026 3643 0004 1 11 0022 3042 0022
3 34 0003 0000 0000 2 01 0010 3012 0010
4 16 0000 4000 3650 3 30 0000 3667 0000
5 15 4000 3605 4000 4 02 0010 0005 0010
6 01 0006 3611 0006 5 01 0010 3611 0010
7 14 0006 4000 4000 6 35 4000 0003 4000

3650 05 0007 0017 3655 7 01 0003 0010 0010
1 01 3011 0017 0017 3700 15 4000 3605 4000
2 03 3016 0004 0004 1 14 4000 0010 4000
3 01 3011 0003 0003 2 16 0017 0007 3304
4 31 0000 3642 0000 3 01 3011 0017 0017
5 14 3011 0000 0017 4 03 3011 0006 0006
6 34 0011 0000 0000 5 31 0000 3663 0000

The printout subroutine converts the mantissas and exponents into
the decimal system and prints out the results in two-line form: the
mantissa and exponent of a number appear on different lines. The argu­
ment of the subroutine is stored in address 0004.
Printout Subroutine

3510 14 0000 0000 0007
1 15 0004 3606 0005
2 15 0004 3605 0006
3 16 0005 0000 3551
4 05 3625 0005 3524
5 05 3623 0005 3532
6 11 0006 3626 0006
7 02 0007 3012 0007

3520 35 0006 0004 0006

1 31 0000 3514 0000
2 05 3611 0005 3536
3 11 3042 0006 0006
4 01 3012 0005 0005
5 31 0000 3532 0000
6 01 0000 0006 0002
7 30 3026 3540 3100

3540 05 0007 3616 3547
1 31 0007 3542 3544

147

1 01 0004 0005 0006 2 02 0007 3617 0004
2 01 0005 3615 0005 3 31 0000 3545 0000
3 31 0000 3515 0000 4 01 0007 3617 0004
4 11 0006 3614 0006 5 14 0004 3620 0004
5 35 0006 0004 0006 6 22 0003 0004 3304
6 01 3012 0007 0007 7 14 0007 0000 0004
7 01 0004 0005 0005 3550 22 0003 0004 3304

3530 01 0005 3627 0005 1 22 000G 0007 3304

Calculation of Elementary Functions in Mode II
Special floating-point subroutines have been developed to calcu­

late the values of elementary functions. The argument of the elementary
function is stored, as is usual, in location 002, while the result ap­
pears in locations 0003 and 0004. After the subroutine has been execu­
ted, control is transferred to the next instruction.

The subroutines that have been developed Include: /£ sin* cosx,
ex, Inx, arcsin x, arccorx.

The call to a subroutine for computing a given elementary function,
realized in the simulated program with the aid of an instruction fox*
a conditional Jump to the subroutine, is converted by the simulating
routine to the form

V (14) I 0001

377*7(31) N

Here y is the address of the instruction to wnich the computex* is to
go after the call to the subroutine: N is the Initial address of the
subroutine.

Since in simulation, execution of working-program Instructl >n- 1
carried out with the aid of the F operation, it is not permissible to
use subroutines from fixed storage in mode II, since the A-reglster
in the "Kiev" computer has only 10 digit positions.

148 -

Special Constants Used In Running of All MP Programs

3600 11 0000 0000 0000 3614 14 6314 6314'6320
1 06 0000 0000 0000 5 00 0000 0000 0004
2 3! 0000 0000 0000 6 00 0000 0000 0011
3 25 0000 0000 0000 ' 7 00 0000 0000 0012
4 20 0000 0000 0014 3620 00 0000 0000 0020
5 37 7777 7777 7600 1 05 0000 0000 3402
6 00 0000 0000 0177 2 05 0000 0000 3362
7 0Q 0000 0000 0041 3 00 0000 0000 0075

3610 00 0000 0000 0176 4 00 0000 0000 0014
- 1 00 0000 0000 0100 5 00 0000 0000 0101

2 00 0000 0000 0200 6 12 0000 0000 0000
3 00 0021 0023 0021 7 20 0000 0000 0003

Rounding of Numbers
In the simulation of arithmetic operations, as well as in the

formation of numbers whose mantissa and exponent have been separated
in a single location, numbers are rounded in accordance with the follow­
ing rule: if the highest-order digit of the discarded part of the num­
ber equals unity, a one is added in the lowest-order digit of the re­
maining part of the number; if, however, the highest-order digit of
the discarded part of the number equals zero, the rest of the number
is not changed. When numbers are read out with the aid of the printout
subroutine, no provision is made for rounding in order to save time.
Rounding of numbers when arithmetic operations are executed in mode II
permits an increase in the accuracy with which problems are solved.
TEST ROUTINES FOR THE '’KIEV” COMPUTER

The aim of programmed computer checkout consists, on the one hand,
in discovering operating malfunctions and, on the other hand, to ob­
tain the maximum possible amount of information on the location of the
malfunction. Accordingly, the test routines designed to check out the
computer are divided into two categories. Programs of the first type
are designed to discover that a given device is not operating properly.
They are characterized by the presence of a large number of diverse ex­
amples for which the answers are not known in advance. In order to
check on the correctness with which a problem is solved, the same an-

- 149 -

swer is obtained by different means. Test routines of the second type
are designed to pinpoint the location of a malfunction in an improper­
ly operating device, for example, in a malfunctioning digit position of*
an arithmetic-unit adder. In such programs, a fairly small number of*
check problems are solved, and the results are known in advance. Com­
parison of Incorrect results with known results makes it possible to
localize the malfunction. At this time, however, there exist no suffi­
ciently perfected methods of analyzing circuits and constructing systems
of examples that would bring to light any malfunction.

The methods developed by S.V. Yablonskly [23] for relay-contact
circuits are ill-suited for the case under consideration, since they
require a complete list of all possible malfunctions. In this connec­
tion, certain simplifying assumptions were made in the development of
test routines for the "Kiev" computer. Thus, in particular, it was as­
sumed that for a complete check on each device, it would be sufficient
to supply combinations of codes to it such that under proper operation
each of its elements would receive all possible combinations of inputs
(for example, to each digit position of an arithmetic-unit adder).

The second difficulty consists in the following. In checking out
a given device it is necessary to use other devices, which in turn may
not be operating properly. Generally speaking, in certain (fairly in­
frequent) cases malfunctions might appear such that in their presence
program checkout methods could not determine which element was operating
improperly. To reduce the effect of this circumstance, a large number
of similar examples are run with variation in the data affecting the
operating regime only of the device being checked out.

In accordance with what we have said, the following test programs
have been developed and debugged for programmed checkout of the "Kiev"
computer: arithmetic unit; high-speed and passive storage units; con-

150 -

trol unit; magnetic drums; printout unit.
CONTROL-UNIT (UU) TESTS

Operation of the UU is checked by means of three test routines.
The first test routine is designed to check correctness of control
transfers. The program provides for transfers of control by all possi­
ble methods and, in particular, using the link register, to different
memory locations. Here 0 and 1 in all digit positions are transferred
to the Instruction counter and the link register. For each correct
transfer of control, indicators (—0) are transferred into a specially
allocated block; these indicators are checked after all transfers and
printed out if even one indicator is absent. An incorrect transfer may
cause a halt before the indicators are printed out. In this case, they
may be printed out by transferring control to the appropriate instruc­
tion.

The second test routine checks out the A-register, the address
adder (SmA), and loop register Ts. l.e., the execution of group opera­
tions. The address counter is checked by calling the contents of sever­
al locations with the aid of the F operation. The loop register is
checked with the aid of the NGO operation whose execution causes a
transfer of control depending on whether or not the contents of the A
and Ts registers are the same. Thus the check makes use of the coinci­
dence element, but we need no guarantee that the latter operates cor­
rectly, since a malfunction in the coincidence element will be turned
up by the codes used.

When the OGO operation is executed, there is an addition in the
address adder. The correctness of this addition is checked by the trans­
fer of control after execution of the instruction, l.e., with the aid
of the comparison element. An Incorrect result causes a halt.

The third UU test routine checks the A and S registers, the ad-
- 151 -

dress adder, and S counter more completely: proper operation of the K
countei’ as the OZU and PZU address counter; correctness of the trans­
fer of codes consisting of all units and one zero Into the A and Ts
registers of the S counter, as well as transfers into SmA. Here a check
is also made on the operation of digit position 11 of the link register
R, which is not checked by the first test. A halt occurs should these
devices not operate properly.

The fourth UU test routine checks operation of the SmA using
words of the type 0...01...1 + 0...01...1; it checks the indicator of
a group operation (GO) in address III of control-transfer operations,
as well as in all addresses of the normalization operation, which on
the basis of control is the most complex of all the arithmetic opera­
tions .

A malfunction causes a halt. Running of UU tests is controlled by
the sign of assembly location 3000:

1) Tests; 2) sign of 3000; 3) beginning; 4) all.

Tecw
1

1 11 III IV 4 Bee

3hik 3000 g — t — — +

Hma.no 0007 0125 0240 0r66 0007

Tests for High-Speed Storage Unit (OZU)
Each OZU location has a magnetic switch for reading. The magnetic

switches are located at nodes of the matrix, which is called the co>r-
dlnate grid. This grid consists of 32 rows (x coordinate) ana 3< col­
umns (^ coordinate). In writing, 5 binary digits are needed for each
coordinate. As an example, for the location witn address 1043 (1 000
100 011 in the binary system), x = 17; y = 3; thus the 10-dlgit ad­
dress of the number is divided into two five-digit numbers, each of

- 152 -

which is applied to the address formers and ax <iy
Operation of the OZU is checked by means of four tests, each of

which looks for one type of malfunction:
1) improper reading or writing of codes into or out of OZU loca­

tion;
2) unstable storage of words in OZU under multiple reading from

one location and partial selection;
3) improper reading under large load of <I> ;
4) improper selection of word on basis of address.
Running of these tests is controlled by the sign of assembly loca­

tion 3000. If the sign is plus, all four tests run in order (the first
follows the fourth), otherwise only the test to which control is trans­
ferred from the console will run:

1) Tests; 2) beginning; 3) all.

Teci^« I I! III IV 3 Bee

3000 — — — — +

HaiaJio
2

0022 0045 0100 0117 0022

With a malfunction of any OZU location, l.e., if an Incorrect num­
ber is read out, any of the four tests will cause a halt. At that time,
the instruction register K will contain the halt instruction

Here the number k indicates the test number; n is the number of
readings that have already taken place.

The address of the location whose reading caused the halt is con­
tained in the A-register; the word that it should have contained ap­
pears in location 0020.

153 -

OZU tests are programmed in two versions; at the beginning of stor­
age (locations 0200-1777 are checked) and end of storage (the location
block from 0001 to 1600 is checked).

The first OZU test performs one-shot writing and multiple reading
on locations in the tested block, using specially selected words:

00 ... 0; 11 ... 1; 01 ... 0; 10 ... 1

and ones in addresses 0, I, II, and III. In addition, it is possible
to write the word set up in NK No. 3007. To do this, it is necessary to
set a one into the 41st digit position in NK No. 3001 (a minus). If
this is not tne case, the words listed above will be written.

Second OZU test. ’’Tickling" and partial selection. Into locations
of the tested block that are arranged on storage-matrix diagonals (Nos.
0000, 0041, 0102, 0143, ...» 1736, 1777), the program writes zeros in
all digits, while ones are written into the remaining locations. The
diagonal locations are subjected to multiple reading. After this, a
check is made on the content of the other locations. This test will
turn up one of the two following malfunctions:

1) appearance of a zero in place of a one under multiple reading
of zeros or vice versa;

2) partial selection; in this case, the addresses of tne malfunc­
tioning locations can be used to determine which of the diagonal loca­
tions was being read when the partial selection occurred.

Third OZU test — frequency check of . Multiple reading of the
word 0101...10 takes place from a group of locations having the common
code x:

0000—0037
0040-0077

1740- 1777

154 -

Fourth OZU test. The memory is filled with the words

00 ... 001
00 ... 010

io’..’."cxx)
00 ... 001

Next they are read in turn and compared with words formed by the same
rule as was used in writing. After this, the test is repeated with the
ones complement.

The PZU is checked out by calling its entire contents into the
OZU and comparing all codes with those loaded into the computer from
punched tape.
Arithmetic-Unit (AU) Tests

The aritlimetic unit of the ’'Kiev” computer includes:
1) receiving registers and Rg, used to store the multiplicand

and multiplier in multiplication and the divisor and quotient in divi­
sion. Word shifts occur in them in the operations of multiplication,
division, normalization, and shifting. The R.^ register is also used as
the end-of-division counter, etc.;

2) an adder, in which the operation of inequality is performed as
well as transfers from digit to digit;

3) operation register, operation decoder, operation control ele­
ment, and time control element.

The arithmetic unit is checked by two programs. The first program
checks execution of all arithmetic and logical operations. Each opera­
tion is executed on a certain group of words, and the results are com­
pared with known results. Here the words are so chosen that all possi­
ble combinations of inputs are applied to each of the digit positions
of the two registers and the adder.

Certain operations permit partial localization of malfunctioning
adder circuits. The operation of logical addition checks the first reg-

- 155 -

later and the setting input of the flipflop for each adder digit posi­
tion; the operation of logical multiplication tests the second register
and the counter Inputs of the adder flipflops for the initial zero
state; the "inequality” operation checks operation of the adder in the

I
absence of carries, while the carry circuits are checked by the opera­
tions of addition and cyclic addition; shifts in R^ and R2 are checked
by the operations of multiplication, division, normalization, and
shifting.

After the arithmetic unit has been checked out with the aid of the
first program, doubt still remains as to Its proper operation since
malfunctions might exist that would not be turned up by this test. A
more complete check is accomplished by the test of multiplication and
division of pseudorandom numbers. This routine is designed to turn up
malfunctions in the arithmetic unit and is less convenient from the
viewpoint of localization of the Improperly operating circuits.

Multiplication is checked in the following manner. A sequence of
pseudorandom numbers is generated. Each new number is multiplied twice
by the preceding number, with the locations of the factors being inter­
changed. Since the multiplicand and multiplier play an essentially dif­
ferent role in the execution of the multiplication operation, a malfunc­
tion of the adder or one of the registers should cause disagreement In
the results of the multiplications. In this routine, multiplication is
carried out with rounding.

Division is also checked with the aid of a sequence of pseudoran­
dom numbers. The operation is performed twice on two successive numbers
(the smaller is divided by the larger). Here the second division is
carried out by a special subroutine using an iteration formula which
should yield a quotient having an error not exceeding e - . The re­
sults should coincide to within e.

156 -

Both tests are punched into a single tape. The first test is divi­
ded into three parts: testing of logical operations, the addition oper­
ation, and remaining operations. Setting up the different signs in as­
sembly location 3000, the test may be run in parts or all parts may be
run in sequence:

Tecrw 1 , II III IV- 4B"
3h>k HK 3000 . • + + + 4- — '

Him.no.................... 3 0043 0110 0155 0214 • 0042

1) Tests; 2) sign of NK 3000; 3) beginning;
4) all.

The routine Is run repeatedly until the computer is halted from
the control console or until an incorrect result appears. If an incor­
rect result is obtained for one of the first three test segments, a
halt will occur and the result of the disagreement between the result
obtained and the previously known correct result will appear at the
control console (adder signal).

If test IV causes a disagreement in tne results of two multiplica­
tions or two divisions of exactly the same numbers, the machine will
print out both factors (or dividend and divisor) and both results, and
will halt. The halt instruction in instruction register K will contain
in address III the code for the operation executed (multiplication 11
or division 12).
Printout Test

The number-printing device is tested by printout in octal or deci­
mal of four groups of numbers (see Appendix 2). The order and number of
printouts is regulated by the content of location 3000 in tne following
manner. For 3000 = +0, the first group of codes is printed out multiply.

157 -

When 3000 is switched to —0, printing out of the second group commences.
Then +0 gives the third group and —0 the fourth group.

It should be recalled that when we go to print out the third group
it is necessary to ensure decimal printout. The first two groups are
printed out in the octal system. Programs are loaded from the control
console by the instruction

21 0001 0655 0001

Magnetic-Drum (MB) Test
The magnetic-drum test verifies that words are written properly

onto MB and read properly from MB into OZU.
The test runs in the following sequence:
1) words are written irto the first half of the OZU location;
2) words are written into the first drum areas;
3) reading from MB into the second half of the OZU location;
4) word-by-word comparison of codes written onto and read from MB;
5) writing onto next MB segment;
6) go to No. 3.
The sections of the MB test may be of different length, but cannot

occupy more than half the OZU, i.e., can contain no more than $00 word;;.
The length of a segment is given in address I of location NK 3000 (n).
Address II of NK 3001 specifies the number of segments into which the
drum is divided. The test is designed to check two drums. The drum num­
ber is given in location 3002

OfeOO b

Here k = 1, 2; ib is the initial drum location.
Should words not agree, tne computer will halt.
Provision is made for two cases of formation of codes to be writ-

158 -

ten:
a) the code to be written is set up manually in NK 3007, and ex­

actly the same word is written into all drum locations;
b) the code to be written is formed on the basis of a pseudoword

program, and a new word is transferred into each OZU location for writ­
ing.

Manu­
script
Page
No.

[Footnotes]

140 The MP algorithms were developed by I.V. Sergiyenko and L.N.
Ivanenko under the guidance of Ye.L. Yushchenko.

159 -

TRANSLATOR PROGRAMS FOR THE "Kiev" COMPUTER
FORMULATION OF PROBLEM

In this chapter, we describe two translator programs (PP) for the
•'Kiev" computer - PP-AK and PP-2.

The PP-2 is the first of the automatic-programming systems devel­
oped for the "Kiev" computer; fundamentally, it is intended for the pro­
gramming of arithmetic problems. The PP-2 language takes into account
several special features of "Kiev" machine language, and is not a gener­
al-purpose language such as the address language or Algol [13], i.e.,
it is intended only for translation for the "Kiev" computer. In this
lies the defect of PP-2.

The PP-AK language uses as a source language the address language;
very minor restrictions are imposed on the style of the latter [19].
The use of the address language as a source language for all other
computers of the VTs AN UkSSR accounts for the extensive success gain­
ed in the practical introduction of this PP.

In the development of both types of PP, the following was the basic
requirement: the PP should be acceptable in practice and convenient to
use. As a result, both PP are intermediate in position between large
translator programs and compiler programs. They resemble the latter in
compactness and high running speed. In a certain sense, both PP may be
considered as loading routines, since the translation of tne initial
information into "Kiev" machine language is accomplished at the same
time as loading, delaying the latter process almost not at all. But the
use of the PP makes it possible to load a program Into any storage

160 -

area, reduces the number of working locations used, makes it possible
to write the program onto drum, as well as to monitor loading and mag­
netic writing.

We also note that with the aid of the PP-AK and PP-2 it is possible
to obtain programs intended to perform floating-point calculations.
One of the following methods may be used for this purpose.

The execution of floating-point calculations may be provided for
directly in the writing of an address program which is used in conjunc­
tion with the PP to write floating-point programs.

The insertion of the floating-point mode directly into address
programs, however, frequently envolves great amounts of effort and in
this connection it is possible to use the method given in Chapter IV
for simulation of tne floating-point mode. Since the use of this method
Imposes certain restrictions on the set of admissible elementary opera­
tions, and also leads to slowing down of the calculations by roughly
a factor of 10, it may be employed for Isolated program segments; the
other segments; the other segments may be executed in fixed-point mode
or with floating scale factors.

The utilization of parentheses in formula representations is a
special problem. As the Polish mathematician Jan Lukasiewicz has shown,
the order of execution of operations may be specified uniquely without
the use of parentheses; when we do this, the operation symbol must come
first, with the arguments following. As an example, the expression

(a + b) x c — f

in the Lukasiewicz representation will have the form
= X + abcf,

while the expression
In (a + 6) v .

161 -

will have the form
— x : In 4-a6 — abcf.

The Lukasiewicz representation is no less convenient than the gen­
erally-accepted representation of formulas with initial and terminal
parentheses, brackets, braces, etc. It is especially convenient In the
representation of conversion operators for automatic programming. Here
we speak not only of eliminating one class of Initial information —
the parentheses — which enables us to simplify coding. Parenthesisless
representation of formulas possesses one extremely interesting proper­
ty: the sign on the first operation symbol on the right belongs to the
operation being executed. Thus, the parenthesisless representation of
formulas permits a substantial simplification in the choice of informa­
tion for instruction synthesis.

It is simple to go from the generally-accepted notation to the
parenthesisless form; moreover, this may easily be done by the computer
itself, as in the automation systems given here. The Lukasiewicz repre­
sentation is used directly by the PP-AA and PP-2 translator programs
in a somewhat modified form — it is used from right to left. Our exam­
ples would be rewritten as follows:

feba 4- x «"
feba — ba + In: x —

This type of representation makes it easy to select information
for instruction synthesis. Thus in the first example, the first opera­
tion to be performed is the addition a + b or ba +. To establish thi ■,
the algorithm scans three elements at a time from left to right for a
two-term operation and two elements at a time for a one-term operation.
In the second example, the first operation executed will be a — b or
ba —, but to find it, the algorithm must scan and analyze one informa­
tion element (El) at a time, and find the operation symbol. In virtue

162 -

of the representation rules, the two EI on the left (one for a one-term
operation) will be arguments.

In programming formulas given in parenthesis representation, we
first apply the algorithm for translating the parenthesis representa­
tion into the parenthesisless form (see [21]) with a simultaneous (for­
mal) check on these representations [22].
TRANSLATOR PROGRAM FOR "Kiev" COMPUTER USING ADDRESS ALGORITHM AS INPUT
INFORMATION (PP-AK)*

The advantage of the PP-AK as compared with the translator programs
known to us consists primarily in the generality of the algorithmic
source language. This feature of the source language makes the PP-AK
extremely promising as the number of different types of computer in­
creases .

The tendency to create PP that run quickly and are convenient for
practical utilization has led to the need for imposition of certain
restrictions. In particular, in PP for the "Kiev" computer there so
far is no automated call to external memory.

Despite the fact that PP-AK (without the block for conversion of
formulas into parenthesisless form) consists of a total of only 576 in­
structions (in the decimal system) it uses the universal address lan­
guage as a source language with very slight restrictions on the style
of the language, Includes a formula-reduction block, a working-cell re­
duction block, and a block for evaluation of predicate functions.

The working program compiled by the PP-AK may be punched out onto
cards or paper tape.

The average running speed of the PP-AK is 100 instructions per min­
ute (allowing for loading and readout). Input Information is supplied
by zones. There is provision for automatic monitoring of working-program
allocation over the working field.

- 163 -

The optimum length of working programs (most suitable for the PP-
AK) runs up to 600 octal codes; to create longer working programs, it
is necessary to divide the address algorithm into closed blocks, l.e.,
into segments with one entrance and one exit.
PP-AK SOURCE LANGUAGE

For this variation of translator program is the address program
for the problem. In accordance witn this situation, the following ad­
dress formulas are admissible for the Information: transfers (arithme­
tic operators); program entrances (operators calling up subroutines);
predicate formulas (logical operators), and unconditional-Ump labels;
halts; loops; printout. In isolated cases, it is permissible to supply
information in the form of prepared instructions which the translator
program shifts as a whole into the working program. Such information
elements are called nonstandard statements.

Transfer formulas form a portion of an address program that reali­
zes one-shot conversion of Information in accordance with a certain se­
quence of address formulas; the result is written into an address
specified, in the general case, as the value of some address function.
The radix-point mode should be considered when an address algorithm Is
written.

The transfer of the content of address a into location b is repre­
sented as ’a— Yb (as a rule, we write in address language). Thus
in the address style of PP-AK, the rank of a formula located to the
right of the transfer symbol =), is increased by unity as compared with
the generally employed method of representation in the address language
(we may assume that the symbol =) is replaced by the symbol =)'). Address­
es of rank zero are used only as address components and as counters in
loop statements. The use of addresses of rank zero is forbidden for
other cases. An address of rank zero must be the second argument of a

164 -

statement.
An address-program segment is called a subroutine if it has a sin­

gle initial entrance label Ky and an exit lable g' (subroutines with n
entrances are considered as n subroutines). Address formulas represent­
ing the realization of a subroutine with entrance Ky at a given point
in the address program are called subroutine entrance formulas; such
formulas are represented by nKy.

Subroutine entrance formulas are coded as one-term operations In
internal storage.

The entire input information for a subroutine (information on the
blocks to be processed and obtained, labels of subroutines to be used,
exit label, etc.) are specified in the form *0002 = sequence. For indi­
vidual subroutines with a small number of parameters, it Is necessary
to perform parameter transfers directly ahead of the entrance formulas,
with the parameters being placed into subroutine working locations
(0004, 0003, . ..), except for 0002. The parameter that should appear
in location 0002 is written as the argument of a single-term operation
coding the entrance formula for the given subroutine.

Example. In an address program, the calculation ’a + In'x with
scale factor N on In should be represented in the form jv=)ooo4

a + In '=>'c.

Each subroutine should terminate in the El-
All lines of the program to which control must necessarily be

transferred (and only such lines) are marked off by labels In order of
their appearance in the initial information; the labels take the form
of a sequence of positive integers (they are numbered starting with
1), and after each label there is the ’’beginning of operator” sign (de­
signated i..., where 1 is the operator number). The same labels are
used in the representation of values of corresponding predicate formu-

- 165 -

las .
In addition to operations available in the operation set of the

"Kiev" computer, the following operations, which can be simulated by
the PP-AK, are admissible:

1. No more than
a < b «> 'c.

The operation means

•c __ f *■••• w#'en a > 6;.
| true when a <b.

2. No more than in absolute value ” | < |’’:

The operation means

t | («!»• When I a I > 161;
(true when | fl | < | b [.

3. Equals
(a ««b) =)’c.

Operation means

false when
true when

a + b;
a — b.

4. Equal in absolute value:
| a |»= | b | =) e.

The operation means
false when
true when |a|- 1*1

Here a and b are addresses of rank zero, one, or two; the value true is

represented by the code —0, and the value false by the code +0.
5. Inversion: not f, where f is any address formula. The logical

operations and, or, not are represented by the corresponding words.
A halt formula is represented by the word "halt.”
Loop formulas of the following type are admissible:

- 166 -

1

where aQ, Aa, are addresses of rank zero or one.
The formula 4 Is placed at the beginning of Its domain of influ­

ence (at the beginning of the operator), simultaneously replaces the
label symbol i_ with the ellipsis, and causes the program segment on the
basis of line K-^ exclusively (!) to repeat, assigning successive val­
ues to address tt ranging from aQ to an with Interval A$.

Thus, it is possible to specify both numerical values of loop
parameters and the addresses containing them; here the numerical values
can only be positive octal integers, while the addresses can contain
any values. It is necessary to remember that:

a) an is given in the form an = an — Aa, where an is the last
value of the parameter ’tt for wnich the loop should be executed;

b) if the lower limits of Inner and outer loops coincide, two
labels must accordingly be placed at the end of the loop.

Ex ample. Let the operator 2^ be used in a double loop. The corres­
ponding address program looks like this:

UH ••
Ui + 1 (

i + 2

The operation of reading out (printing out) the content of address
•a — an octal or decimal word — is represented in the form

Unt'a or /7«ie'a.
To read out a sequence of codes, a loop formula is employed.
Example. Print out the number ’(« + 1), ..., 1(a + n).

WHCJIt *(« + D. • • • . '(« + ")•
Z/K{l(l)n— >'f)X+a

Storage Allocation + ‘

Machine memory is allocated in the following manner. Initial data

...... J. mi ■. w t

for a problem and fixed addresses are stored at the end of machine mem­
ory from location 1777 on; the working program (RP) compiled by the
PP-AK is placed from location 0020 downward. The PP-AK selects working
locations, distributing them between the program and initial data.

For coding, the address program is represented in symbolic address­
es (in letter expressions).

After processing the information, the PP-AK delivers the working
program for the problem and a table showing the distribution of labeled
lines in computer memory. Without the block for converting formulas to
parenthesisless form, the PP-AK takes up 1100 OZU locations (octal),
i.e., 57610 addresses. Including loading and readout, it runs at a
rate of 100 instructions per minute.
Coding Information for PP-AK

The following dimensional data is punched into the fourth tape
zone in the indicated order ahead of the basic information:

1) maximum number of labels (with ellipsis) in the problem — n^;
2) number of locations occupied by numerical information of prob­

lem — n^;
3) length of longest segment of Information — n^;
4) length of first segment of information and number of zone on

punched tape into which this segment is coded.
All information on the program is divided into segments not exceed­

ing n$ elements in length (n^ is fixed for a given problem). This divi­
sion is arbitrary, except that the integrity of individual formulas
and nonstandard statements should be preserved. Each segment is punch­
ed in to a separate tape zone; its information terminates with the
"end-of-loaded-segment” symbol, after which there is an indication of
the length of the next segment, given in the form

X *

168 -

Here m Is the length of the segment; k is the number of the punched-
tape zone in which this segment appears.

Each individual Information element is stored in a single OZU loca­
tion. The first five digit positions of the location (operation-code
bits) are set aside for the indicators that classify the element.

Below we give the rules for coding various classes of informaticn
elements.

1. Before a nonstandard statement, there should be its Indicator
— the governing element

» A

Here n is the number of elements in the nonstandard statement. Follow­
ing this code there are n Information elements, which should be placed
as a whole into the working program.

2. The beginning of the operator is

15

3. The end of the information on the problem is

14

4. The end of the loaded segment is

17

Coding of numbers. Information on a number should contain the
number indicator, the absolute address of the number, and the rank of
its address. The number indicator is coded in the operation-code bits
of the Instruction, address a goes into the address-I bits, the rank
r of the address goes into the address-III bits:

00 « r

The rank of a number is arbitrary and may range from 0 upward;
- 169 -

addresses of ranK 0 are treated by the PP-AK as corresponding numbers
of units In address II. The use of addresses of rank zero Is admissible
only for address modification and the operation of counters.

Coding of operations. The PP-AK distinguishes among one-term, two-
term, and prime operations. The operation of transfer based on an ad­
dress is treated as a two-term operation.

In addition to the elementary operations available in the opera­
tion set of the "Kiev" computer (+, |- •, x. E). J7-», V. A, +U. CaK. a),
certain generalized operations are also admissible; they are Simulated
by the translator program through the writing of routines for their
realization or calling up a standard subroutine where one is available
in the OZU. Among the operations simulated by the PP-AK we might note
mod a, an, as well as certain special operations frequently encountered

in programs. This expands the ret of computer operations, as it were.
As we have already indicated, the PP-AK also simulates certain logical
operations.

The simulated operations are coded as:

02 1350 r

1=1 02 1366 r

KS 02 1404 r

1 1 02 1410 r

1 OTpiiuaHiie 22 1620 r

2 CTenenb 22 1626 r

3 MoAyjib 22 1635 . r

1) Negation; 2) degree; 3) abso­
lute value.

Here r is the rank of the result of the operation.
The following codes are introduced for coding of formulas in par­

170

enthesis representation:
initial-parenthesis code

terminal-parenthesis code

Formulas are separated from one another by a separating symbol,
whose code takes the form

90

The halt, load, and readout operators are coded as nonstandard
statements.

Elementary operations are coded in the form

01
f

00*

Here k is the octal operation code; r is the rank of the result.
The operation code for ==) has the form

The evaluation of functions by a standard subroutine is coded as
a one-term operation, whose code corresponds to the address of the
first subroutine Instruction in ZU or to the subroutine label

21 h r

Here k^ is the subroutine entrance; _r is the rank of the result of the
operation.

A prime operation is coded in the following form:
a) rank of address if this operation occurs directly before an

address;

171

b) rank of result If it occurs before an operation symbol.
Coding of predicate formulas. The realization of an arbitrary

predicate formula
.... xJIKalK. (21)

may be reduced to calculation of the values of the corresponding pred­
icate function F(x-^, . .., xo) and to realization of a predicate formu­
la having the form

P('a <0)K, * K„ (22)
where ra Is an address of rank r used as the basis for storing the crai-

puted value of the predicate function.
Predicate formulas of form (22) are said to be elementary. A pred­

icate formula of the general form (21) is coded as

F(xx.... ~
The translator routine programs evaluation of the predicate func­

tion F by an arithmetic operator. Two locations are set aside for the
coding of elementary predicate functions; data is stored in them in
the following manner:

16 a r

K. Ki

If the predicate formula (22) occurs in the information directly
after evaluation of a predicate function, and the value of the latter
has been obtained in a working location, then zeros are used In place
of and _r when the predicate is coded.

If (or K2) is the label for a statement occurring directly af­
ter a predicate formula, then this statement need not be marked off
specially, and in coding, (or K?, accordingly) is replaced b/ a
zero.

Information on loops is coded as follows: the loop fo mula

- 172 -

H ' *aao) r,OMOMeMB ~~~) **) K

is coded in two OZU locations in the form

15 It °KOHeMH Ki

Oi Ac, n + f»

Here r^, r2 and r^ equal 0 or 1. When r^ = 1, a 1 is placed into the
2nd bit of location K + 1, while when r = 2, a 1 is placed into the
1st bit of location K + 2.
Programming Algorithms

The translator program consists of the following blocks: governing
algorithm; arithmetic; processing of nonstandard statements; storage
of statement addresses; assignment of absolute addresses; processing
of loop formulas.

The governing algorithm of the PP-AK translator program loads into
OZU the next segment of the information on the program, analyzes the
next governing element of the information, and depending on its classi­
fication transfers control the appropriate PP-AK block.

The arithmetic-statement programming block programs formulas while
simultaneously reducing the number of formulas and working locations
employed.

The arithmetic block transfers control to the governing statement;
the signal for this is the appearance during scanning of an element that
is not characteristic, i.e., an element that is neither a variable nor­
an operation.

The arithmetic-block algorithm fundamentally duplicates the algo­
rithms used by humans in manual programming. Reduction in the number of
working locations is achieved within a given statement; reductions in
the number of instructions are gained within a given formula. Expansion
of the algorithm to reduce the number of instructions outside a given

173 -

formula is an extremely difficult program in view of the presence of
addresses of higher rank in the information.

The order of execution of the arithmetic-block algorithm is as

follows:
Search (from left to right) for the first operation to be executed.

The information is scanned until the first operation to be executed is

found.
Construction of an instruction (or several instructions) realizing

the operation that has been found, and transfer of the result into the

next free working location.
Transfer of address of result of programmed operation with indica­

tor of working location into initial information at location of code
for this operation.

Compression of information: the Information from the beginning of

the operator up to the location storing address I, on which the opera­

tion is to be performed, is tightened up all the way to the location
that now contains the result of the programmed operation.

Example. Let the following arithmetic operator be programmed:

* ° f X sin 'a a—)'d.
c

In parenthesisless notation, the formula will look like this:

dcba 4-: a sin x =).

Let the information on the formula occi d locations from a to a i

a 0-t"i •4’2 ®4"3 ®-f-5 ®+6 a-j-8 ®4"9 o-piO a-plj

The first operation to be performed will be the addition a + b. After

this operation has been programmed and the result transferred to some

working location _r, as a result of compression the information wil]

- 17^ -

> 'tft—I..

have the form

®+l a+2 «+3 «+< a+5 a+6 «-|-7 a-f-8 a+9

. . . • . . d c r • a sin X • • • 1
Location a+2 becomes the beginning of the statement.

Reduction in number of instructions at the initial-information
level. If within a given formula we find an operation to be executed
for which the information coincides with the information on an execu­
table operation that has already been found, the address of the result
of the first of these operations is assigned the indicator of a stand­
ard location and this together with the indicator of a working location
is transferred to the location of the operation code of the analogous
formula, after which the information is again compressed. The search
for the next analogous operation continues until the transfer sign
=>, is encountered, indicating the end of the formula.

Thus, if a formula contains several analogous operations, after
the first such operation has been programmed, in place of information
on each of them, there Will be information on the address of the re­
sult and for all formulas except the last the address of the result
will be provided with the standard-location indicator, while the last
will be provided with the working-location indicator.

Search for next operation to be executed. Searching continues un­
til the entire information on the arithmetic operator has been proces­
sed into the program for the problem.

If the addresses contained in a considered operation to be execu­
ted are addresses of higher rank, the special address-rank reduction
routine will run before the operation is programmed. This routine forms
the address-rank reduction instruction if a is an address of rank two,

175

a

while if the rank of the address a > 2, the following instructions are
formed:

Before these instructions are written into the program, a check
is made to ensure that the A-modification register does not contain
the required address and that the content of the given address of high­
er rank has not changed in the A-register at the instant of calling if
the call has taken place (i.e., that the given address of higher rank
is not contained in address III of the instructions of the working
program that follow the instruction calling it to the A-register). Where
conditions are favorable, the F instructions can be eliminated.

If some operation K is performed on addjesses of which only one
is an address of rank two, then the following instructions are written:

0 b — —

K 4000 a r

If both addresses are of rank two, then the operation on tti^m is
programmed in the form

0 b — r •

0 g —

K r 4000 r

Instructions are programmed similarly for ranks exceeding two.
Operatons with addresses of rank zero are programmed in a special mari­
ne)-.

- 1.76 -

If in the initial information an operation is preceded by the code
for a transfer on the basis of an address =>, this means that a change
is made in the content of the address for rank one by n units. In this
case, the translator program writes the instruction

a 6

Here _a is the modified address; rn is the address into which the PP-AK
places the shift constant n after first verifying that it is not con­
tained among the PZU numbers or among constants formed earlier.

If the result of an operation is an address for another operation,
programming of an operation of rank 0 must be performed directly before
programming of the operation for which it forms the address. Here the
address of rank 0 is stored with the modification indicator in the in­
struction, while the address of higher rank is placed into the A-regis-
ter.

Reduction in number of working locations. The translator program
sets aside a special block for working locations; only the lower limit
is specified (the upper limit may also be specified since the maximum
number of working locations equals the number of operations to be exe­
cuted simultaneously that enter into a single formula).

Each working location into which a result is placed is marked off
in the block by transfer into it of a special code (—0). If a location
with the indicator rab then participates in the operation as'performed,
according to the instruction-reduction algorithm, it will be taken to
be free from this time on, and the code +0 will be placed into it. Thus,
all working locations that are free at a given instant will contain
+0, while those that are bound will contain —0. When it is necessary
to store the result of an operation in a working location, the PP-AK
looks through the block of working locations for the first location

177

from the bottom that is free, l.e., the first location from the bottom
containing +0.

Assignment of absolute addresses. In allocating machine memory,
it is necessary to take into account the fact that the construction of
algorithms by the PP-AK requires that the initial data for the program
be stored at the end of memory; the program for the problem will be
written from the OZU location specified in assembled word 3007:

3007

The PP-AK obtains information on the absolute addresses of numbers
and Itself selects working locations, so that all instructions that it

compiles are written in absolute addresses. Instructions realizing
conditional Jumps and operations on codes contain in place of the In­
struction addresses the labels for lines - the numbers of statements
to which control is to be transferred. An exception is represented by
instructions calling up standard routines, which are also written in
absolute addresses. In the course of programming problems, the PP-AK
compiles a table of statement storage allocation, in which the ith
line (location) contains the absolute address of the first instruction
for the ith statement of the problem.

After programming, a special PP-AK block begins to run, the so-
called absolute-address assignment block. In all instructions contain­
ing numbers of statements, these numbers are replaced by the addresses
of the first instructions of the statements in accordance with tne
statement-allocation table:
EXAMPLES OF PROGRAMS COMPILED BY THE PP-AK

I. Let us consider an algorithm for the method of conjugate gra­
dients following the first Gauss transformation used to solve systems
of linear algebraic equations. .
Description of the Method

Let A be a nonsingular matrix. From the pystem AX - F, the fii t

- 178 -

Gauss transformation produces the system
A AX - A'F.

Application of the method of conjugate gradients to this system yields

Here is the discrepancy for the transformed system. It is clear that
r^ = A’r^, where r^ is i? e discrepancy for the initial system. Taking
this into account and transforming the scalar product, we arrive at
the calculation formulas:

Address Program
A vector s1 is given in the form of an A-sequence, a vector As.^

as a B-sequence, a vector r^ as a C-sequence. The solution of system
X will be obtained in the form of a D-sequence.

In connection with the fact that the initial matrix may contain
many zeros, the information is specified in the form of a block of num­
bers and scales

H

I A 11 A III A

- 179 -

Here i is the number of the line; J. is the number of the column; and
a is the address of the nonzero element.

The number of scales equals the number of nonzero matrix elements.
To two equal matrix elements there corresponds a single number in the
block of numbers and two scales with different second addresses.

The block of scales is specified in the form of an H-sequence,
and n^ is- the length of this block. The beginning of the block of free
terms of the system is given, while all other sequences are obtained
in accordance with the pr >gram.

The program includes three subroutines: 1) scalar product of vec­
tor; 2) product of transposed matrix by a vector; 3) product of matrix

by a vector.
After [n/2] loops the computer should check to see whether the

elements of tne C-sequence are less than the given e. If any of the

elements is not less than e, then [n/2] more loops should be executed.

If all elements of the C-sequence are less than e (in absolute value),
a check is made, i.e., the C-sequence is calculated again. If the ele­

ments of the newly computed C-sequence are less than e, the D-sequenco

is generated — this is the system solution; in the opposite case, com­
putations begin again with the newly obtained C-sequence.
Address Algorithm in PP-AK Style

1 ... 11 4001 0006 0006
HC — 0012 — 01 0006 0003 0003
01 0000 0000 0003 01 0002 3011 0002
34 0002 0000 0005 01 0004 3011 0004
34 0004 0000 0006
34 0002 0000 0000

02
31

0005 3011 0005
0005 3146

2 ...
'3012=)'/

3 ...
'3010 =>'i
'3011 =)'h

0=) 's

- 180 -

Beginning of program

20

22 ..

24 ..

25 ..

n«=)aB
'S + '3011=)'0004
k! (B)—>'•
421 (1(1) 7,—)**} 22
' ('C + '*) - '<’* + * =) '('C + 'k)

. I .
'C“=)'Cr *
'B—>'Br
«2
n=)"B ,
'B+ '3011—>'0ua
<1 (B)=)'p,
423(1(1)%—)'t) 24
* ('D + '*) + 2lx-32L±^—) • ('& + '*)
* ('B 4- '*) + 4 '*> —) '('X + '*)

>'Pi .

426 (1 (1)%—)'/)
I T('C 4-*i)| < «} 26 4 15

27 ...
’D =) ’Ar
'C ‘Pr
kIO
43u(l (I)' ,,=>'*) 31
' ('/? 4- 'fe) - '('C 4- 'k) =) '('C 4­

31 ...
432(1(1)’ r,=)'*)33
P(|'('C 4-'*)!<«(32| 14

33 . ”434(1(1)' r, =•>'*) 35
'('D4-**)- ’>'0002

HC — 0002 —

30 3026 0000 3100

22 0003 0003 0000

35
Halt

The lines from label 1 to label 2 are the subroutine for the scalar

product of vectors (given as a nonstandard statement); the liner from

marker 2 to 10 are the subroutine for multiplication of a transposed

matrix by a vector; the lines from label 10 to 13 inclusive ere tin?

subroutine for the product of a matrix by a vector.

- 18? -

Storage Allocation

0001 — / 1774 —r.
0002 — Cr, Bt 1775 —Z
0003 — i 1776 — *WM — Ar 1777— s,
0005—A 3000 — H0006-r, 3001— C
0007 — r. '3002 — n
0010 — s '3003 —n,
0011—/?, '3004 —
0012 —
0013—B
X)14 —D
0015 —p.
0016 —<
0017—p,

'3005-.

Working Program Produced by PP-AK
0020 01 0000 0000 0003

1 34 0002 0000 0005
2 34 0004 0000 0006
3 34 0002 0000 0000
4 11 4001 0006 0006
5 01 0006 0003 0003
6 01 0002 3011 0002
7 01 0004 3011 0004

0030 02 0005 3011 0005
1 31 0005 0022 3146
2 01 3012 0000 0001
3 01 3010 0000 0003
4 01 3011 0000 0005
5 01 0000 0000 0010
6 01 3000 0005 0566
7 34 0566 0000 0000

0040 15 4000 3024 0006
1 16 0006 0001 0045
2 01 0005 3011 0005
3 02 0005 3003 0566 4 31 0566 0071 0036
5 01 3000 0005 0566
6 34 0566 0000 0000
7 15 4000 3022 0006

0050 02 0006 0003 0566
1 02 0003 0006 0565
2 15 0565 0566 0566
3 31 0566 0065 0054 4 11 0003 3040 0006
5 01 0002 0006 0566
6 01 3000 0005 0565
7 34 0565 0000 0000

0060 34 4000 0000 0565
1 34 0566 0000 0000
2 11 0565 4000 0565
3 01 0565 0010 0010
4 01 0005 3011 0005
5 01 0003 3010 0003
6 02 0005 3003 0566
7 31 0566 0071 0070

0070 04 0003 1774 0036
1 12 0001 3040 0006
2 01 0004 0006 0566

' 3 34 0566 0000 0000
4 01 0010 0000 4000
5 01 0001 3012 0001

6 04 0001 1775 0033
7 32 0000 0000 0000

0100 01 3010 0000 0003
1 01 3011 0000 0005
2 01 3012 0000 0001
3 01 0000 0000 0010
4 01 3000 0005 0566
5 34 0566 0000 0000
6 15 4000 3024 0006
7 02 0006 0001 0566

0110 02 0001 0006 0565
1 15 0565 0566 0566
2 31 0566 0124 0113
3 12 0001 3040 0006
4 01 0004 0006 0566
5 01 3000 0005 0565
6 34 0565 0000 0000

. 7 34 4000 0000 0565
0120 34 0566 0000 0000

1 11 0565 40C3 0565
2 01 0565 0010 0010
3 01 0005 3011 0005
4 01 0001 3012 0001
5 04 0001 1775 0104
6 11 0003 3040 0006
7 01 0002 0006 0566

0130 34 0566 0000 0000
1 01 0010 0000 4000
2 01 0003 3010 0003-
3 04 0003 1774 0102
4 32 0000 0000 0000
5 12 3002 3040 1774
6 11 3002 3040 1775
7 02 3002 3011 0007

0140 01 3002 3011 0006
1 01 3001 0006 0011
2 01 0011 0006 0012
3 01 0012 0006 0013
4 01 0013 0006 0014
5 01 0012 0000 0004
6 01 3001 0000 0002
7 30 3026 0150 0032

0150 34 0012 0000 0000
1 01 3002 0000 4000
2 01 0012 3011 0004
3 01 0012 0000 0002

. 4 30 3026 0155 0020
5 01 0003 0000 0015
6 02 3004 3011 0006
7 Q2 0000 3011 1777

0160 01 1777 3011 1777
1 02 3011 3011 1776
2 01 1776 3011 1776
3 01 0014 1776 0566
4 34 0566 0000 0000
5 01 0000 0000 4000
6 04 1776 0007 0162
7 01 0012 0000 0004

0170 01 0013 0000 0002
1 30 3026 0172 0100
2 34 0013 0000 0000
3 01 3002 0000 4000
4 01 0013 3011 0004
5 01 0013 0000 0002
6 30 3026 0177 0020
7 01 0003 0000 0016

0200 02 3011 3011 1776
1 01 1776 3011 1776
2 01 3001 1776 0566
3 01 0013 1776 0565
4 34 0565 0000 OOC'J
5 11 0015 4000 0564
6 12 0564 0016 0564
7 34 0566 0000 0000

- 183 -

0210 02 4000 0564 4000
1 04 1776 0007 0201
2 01 0012 0000 0004
3 01 3001 0000 0002
4 30 3026 0215 0032
5 34 0013 0000 0000
6 01 3002 0000 4000
7 01 0013 3011 0004

0220 01 0013 0000 0002
1 30 3026 0222 0020
2 01 0003 0000 0017
3 02 3011 3011 1776
4 01 1776 3011 1776
5 01 0014 1776 0566
6 01 0012 1776 0565
7 34 0565 0000 0000

U230 11 0015 4000 0564
1 12 0564 0016 0564
2 34 0566 0000 0000
3 01 4000 0564 4000
4 01 0012 1776 0566
5 34 0566 0000 0000
6 11 0017 4000 0665
7 12 0565 0015 0665

0240 01 0013 1776 0664
1 34 0564 0000 0000
2 01 4000 0565 0664
3 34 0566 0000 0000
4 01 0664 0000 4000
5 04 1776 0007 0224
6 01 0017 0000 0015
7 04 1777 0006 0160

0250 02 3011 30H U003
1 01 0003 3011 0003
2 01 3001 0003 05U
3 34 0566 0000 0000
4 06 4000 3005 0566
5 31 0566 0156 0256
6 04 0003 0007 0251
7 01 0014 0000 0004

0260 01 3001 0000 0002
1 30 3026 0262 0100
2 02 3011 3011 1776
3 01 1776 3011 1776
1 01 3001 1776 0566
5 01 0011 1776 0565
6 34 0565 0000 0565
7 34 0566 0000 0000

0270 02 0565 4000 4000
1 04 1776 0007 0263
2 02 3011 3011 177<
3 01 1776 3011 177t?
4 01 3001 1776 0566
5 34 0566.0000 0000
6 06 4000 3005 0666
7 31 0566 0145 0300

0300 04 1776 0007 0273
1 02 3011 3011 1776
2 01 1776 3011 1776
3 01 0014 1776 0566
4 34 0566 0000 0002
5 30 3026 0312 3100
S 22 0003 0003 *0313
7 04 1776 0007 0302

0310 33 0000 0000 0000

II. Let us give programs for the direct and inverse directions
solution for a system of linear algebraic equations with symmetric in-
trix, making use of the improved Gauss method (see Chapter JTI).
Address Algorith in PP-AK Style

Forward dirertion ...

। _ 1 =«> 7
0=)'s
1 =)'«
I...

P{'it<'«|3|0
'<7+l=>'$

J Hi l)| 2 J 0
'&+!=>'«F=>'P

1—)*«
3...
'P+ '«—=) 'p

P U o
9

- 1BU -

T

Initial address mapping

p —0001
r —0002
s —0003
3 — 0004
s, — 0005

Working Program Generated by PP-AK
(forward direction)

0020 02 3001 3011 0002
1 01 0000 0000 0003
2 01 3011 0000 0004
3 01 0003 0004 0003
4 01 0003 0000 0005
5 01 0004 0000 0006
6 01 3011 0000 0007
7 01 3000 0000 0001

0030 01 3011 0000 0010
1 01 0001 0010 0001
2 01 3000 0005 0077
3 01 0077 0004 0076
4 01 0076 "Oil 0076
5 01 3000 0003 0075
6 01 0075 0010 0075
7 34 0075 0000 0075

Address Algorithm in PP-AK Style
Inverse direction . . .

'n=)7
0=>7
'<? — 'n =) 'D

'n —'/=)'/■
0=)m'; 0=)7
2...
P|'* = 7}3 | 0
'B—
'('4 —'*)x#B + 's=>'s

7i —

Initial address mapping
<F —3000
n —3001
D — 0001
B —0002
/ —0003
i —0004

- 185 ■

q —0006
'3.—0007
« —0010
r. —0011
? —3000
4* -3001

0040 34 0001 0000 0000
1 12 0075 4000 0075
2 01 0077 0010 0077
3 34 0077 0000 0000
4 11 0075 4000 0075
5 34 0076 0000 0000
6 02 4000 0075 4000
7 01 0010 3011 0010

0050 04 0010 0004 0031
1 01 0006 3011 0006
2 01 0005 0006 0005
3 01 0007 3011 Q007
4 01 3001 3011 0077
5 02 0077 0004 0077
6 04 0007 0077 0027
7 01 0007 3011 0007

0060 04 0004 0002 0023
1 33 0000 0000 0000

7)
0 — 7=) 7
7:lD=)'(M —7)
'D—7=) 'D
7+l=>7
7—1^7
P|7 = OIO | 1
'n — 1 => 7
4...
' A — 7 =)'OOO2
ynn 3026 1 3100
22 0003 0003 4
7— 1=>7
P (0 < 7| 4 | 0
0

r — 0005
m —0006
k —0007
s —0010
A - 0011

Working Program Generated by PP-AK
(inverse direction)

0020 01 3001 0000 0004
1 01 0000 0000 0003
2 02 3000 3001 0001
3 02 3000 3001 0077
4 02 0077 0003 0002

- 5 02 3001 0004 0005
6 01 0000 0000 0006
7 01 0000 0000 0007

0030 01 0000 0000 0010
1 16 0007 0005 0043
2 02 0002 0006 0002
3 02 0011 0007 0077
4 34 0077 0000 0077
5 34 0002 0000 0000
6 11 0077 4000 0077
7 01 0077 0010 0010

0040 01 0007 3011 0007
1 02 3001 0007 0006
2 31 0000 0031 0031
3 02 3000 0003 0077
4 34 0077 0000 0000

5 01 0010 4000 0005
6 02 0000 0005 0005
7 34 0001 0000 0000

0050 12 0005 4000 0077
1 0? 0011 0003 0076
2 34 0076 0000 0000
3 01 0077 0000 4000
4 02 0001 0004 0001
5 01 0003 3011 0003
6 02 0004 3011 0004
7 02 0000 0004 0077

0060 02 0004 0000 0076
1 15 0076 0077 0077
2 31 0077 0023 0063
3 02 3001 3011 0005
4 02 0011 0005 0002
5 30 3026 0066 3100
6 22 0003 0003 0067
7 02 0005 3011 0005

0070 31 0005 0064 0071
1 33 0000 0000 0000

THE PP-2 TRANSLATOR PROGRAM*

The following requirements formed the basis for development cd tFe

PP-2:

1. The PP-2 language must be similar to the "Kiev" machine lan­

guage.

2. The PP-2 should not encumber internal storage.

3. The PP-2 should be convenient to use.

Here cognizance was taken of the fact that the more the source

language for the translator program differed from machine language,

the more difficult it would be to find ones way around in the working

program (RP). In this connection we have extremely accute problem per­

taining to debugging of the working programs: where do we look for1 er­

rors — at the source-language level or in the RP?

Program Operators

In working programs for earlier-model computers, it was necessary

to distinguish between readdressing, initialization, readdressing-con-

186

stant-generation, and other types of operators. For computers having
an address-modification register, a simpler classification of program
operators can be used: four types of operators are distinguished:

1. Transformation operators of the arithmetic-operator type, which
process information exterior to the RP (initial data and data obtained
in the course of calculations).

2. Logical operators determining the order in which information
transformations are performed and controlling the computational process.

3. Address-modification operators controlling the selection of in­
formation from storage while it is being processed in loops.

4. Technical operators controlling the processes of reading infor­
mation into and out of the computer and exchanging codes with external
storage devices and which vary the computer operating regime and cause
the computer to halt.
Operator Representation

Let us consider methods of representing operators for the sake of
a translator program, without considering their representation in terms
of operations of actual computers.

Transformation operators are usually represented by algebraic for­
mulas and formulas of Boolean algebra with addresses of various ranks.
We call these input addresses. The set of algebraic operations may in­
clude the operations | — |, V. A.E(x) , etc. A calculation using a formula
assumes that a unique result will be obtained. The address into which
the result is to be written is called the output address and is indica­
ted by a special symbol.* The general form of the formula will be

.......... An, D)=>A*,

where D is the operation set and A^ are the addresses.
One of the methods for representing logical operators is to con­

struct predicate formulas which, depending on the truth value of a
- 187 -

given statement will yield a two-direction branch in the computational
process. We may also take the path of constructing the set of elementary
logical operations (standard predicate formulas) used as the basis for
construction of operators for many classes of problems. It is especial­
ly convenient to have sets of operators for narrow classes of problems
such as, for example, machine translation.

The problem of choosing a set of large-scale operators for a fair­
ly wide class of problems remains as yet unsolved. We might note a
solution in which the transfer to a transformation operator is deter­
mined by a set of values for logical variables. To represent an opera­
tor in this form it is necessary to extract all admissible sets of val­
ues of the logical variables and compare them with the numbers of the
transformation operators. This type of representation is convenient for
logical problems, although difficulties arise during translation into
TsAM programs.

We attempted to make the PP-2 as short as possible and, to some
degree, slanted it toward arithmetic-problem programming applicat‘onr;
we selected a very simple but not optimum solution, and used as the
elementary logical operators the predicate formulas that could be real­
ized by the circuitry of the "Kiev" computer, namely:

P \a<b]x 4 «+ 1;
P 11a| <b}x j n + l; .
^{|a| = |&|)x * * + l;
P\a <— 0}x | y,

where x, £ are arbitrary numbers; n + 1 is the number of the instruc­
tion following the instruction containing the predicate formula.

In the latter case, the control transfer is written on the basis
of the sign of the number. This transfer may be preceded by calculation
of the truth value of a certain statement for which the values of the
variables are written into the sign digit positions of t e torago loco-

188 -

tions. The calculations themselves are performed by the transformation
operator.

Thus, predicate formulas are written in the form of finished in­
structions for the "Kiev" computer, but in symbolic addresses (x, y).
The work of the logical block of the PP-2 consists in assigning abso­
lute addresses.

As for the representation of modification operators for the PP-2,
here also we were able to avoid special constructions owing to the di­
rect use in the language, on the one hand, of "Kiev" computer opera­
tions and, on the other, of nonstandard operators.

The fundamental role of the technical operators is to control the
exchange of codes with external memory units. Some of the operations
may be written beforehand, since the volume of numerical material and
its storage allocation are known. As for subroutines, the instructions
used to write them onto drum are formed by the PP-2 itself at the end
of programming. Those technical operators that may be written out prior
to programming are represented in "Kiev" machine instructions, and are
loaded as nonstandard operators.
Storage Allocation and Coding

In view of the limited capacity of computer high-speed storage,
it becomes necessary to break programs down into subroutines and to
load them sequentially from drum. The PP-2 makes provision for realizing
this process. All of the Initial material for programming is divided in­
to segments from which the subroutines are later compiled. At the be­
ginning of each segment there is the NP sign (beginning of subroutine),
and at the end, KP (end of subroutine). The last subroutine carries a
central-control function (TsU) and has special beginning (NTs) and end
(KTs) signs. The subroutines are not joined directly together. Each has
its own set of standard locations for storage of initial data and re-

- 189 -

suits. Thus at any given moment, high-speed memory should contain a
single subroutine. Calling up of subroutines from drum, the required
transfers of initial data and the transfer of control to subroutines
is realized by the TsU, which is in memory at all times. This yields
the storage allocation shown schematically in Table 4. The numbers of
the first subroutine instructions are the same. The TsU begins after
the longest subroutine.

Since a limited amount of PP-2 initial data is stored in high­
speed memory, it is necessary to divided it into zones of k elements
each, where k equals half of the corresponding block of OZU positions.

TABLE 4
Memory Allocation

1} Allocation of "Kiev" machine memory; 2) high-speed memory, 1024;
3) passive memory, 512 location; 4) for; 5) PP-2 working locations;
6) working locations for standard routines; 7) block of positions for
writing RP; 8) block of subroutines, TsU block; 9) block of RP working
locations; 10) external information for PP-2; 11) OZU dictionary;
12) external information for RP; 13) VZU dictionary; 14) standard rou­
tines.

Two zones of initial data are initially loaded into the computer; in
the course of programming, the information elements (EI) that are used
are erased, and the representation is compressed. When there are less
than k EI in the block, the next zone is loaded from punched tape. The

190

division into zones is performed mechanically, and has nothing whatso­
ever to do with the division into subroutines.

Stages and Cycles of PP-2 Operation. The working programs compiled
by the PP-2 consist of subroutines and TsU. All subroutines are program­
med in the same way. For the TsU, the difference lies in the address
of the first instruction. Thus an outer loop consists in the program­
ming of subroutines. Here three stages must be distinguished: the first
stage, programming of arithmetic formulas and rewriting of the elements
of the remaining operator; the second stage, assignment of absolute
addresses; and the third stage, taking of the check sum and writing
onto drum.

We have already mentioned the simplicity of the search for the
first operation to be executed when the formulas are represented from
left to right in the Lukasiewicz form. As soon as an operation is found,
an instruction is formed. A special investigation is carried out before
address III is filled. If there is an output address in the initial in­
formation following an operation, it is written into address III of the
instruction. The appearance of an output address indicates the end of
formula programming. In the opposite case, a working-location address
appears in address III. The number of working locations is reduced
while the block is in use. The block is scanned in the direction of
decreasing addresses, and the address of the first location containing
+0 is Inserted in the instruction, while —0 is written into this same
address. If the numbers of the working locations appear in addresses I
or II of the instruction, the corresponding address is ’’freed" i.e.,
a +0 is written into this address. The number of the greatest working
location (having the smallest address) is noted and compared with the
number of the next instruction. An overlapping of blocks causes an emer­
gency halt of the PP-2.

- 191 -

A single-term operation is programmed In the form of a call to
standard subroutines. The number of working locations is reduced as in
the preceding case. After a finished instruction has been written into
the working program, the initial information of the PP-2 is compressed,
i.e., the used elements in the information are erased and the remainder
of the block is pulled together; at particular times, the next zone is
read. A +0 acts to indicate the end of writing. Nonstandard operators
are written after the sign W(n) and are copied into the working program.
The process continues until appearance of the ”end-of-subroutine” sig­
nal. Then the second stage of programming commences. Now the subroutine
is scanned and all Instructions with symbolic addresses are extracted
in turn. The symbolic address is used as a basis for finding the abso­
lute address in the 07U dictionary; this is placed into the instruction.
The information element T (transfer in symbolic addresses) is processed
specially; it is needed for the organization of control transfers from
TsU to subroutines and within subroutines linking back to a definite
place in the program. In the instruction Tx^ — x2, both addresses are
symbolic. Here x^ is the place containing the constant governing return
from the subroutine; x2 is the address of some standard location used
as a link register. Subroutines conclude with a transfer of control to
this standard location, and since it in turn contains an unccnd’tional-
Jump Instruction, control finally is transferred to the required point
in the program. Using the EI F and W, we can construct an arbitrary
number of link registers. In a T instruction, in addition to the assign­
ment of absolute addresses, there is replacement of the operation code
by a plus sign (transfer).

The third stage is an auxiliary step. The check sum for the sub­
routine is calculated and written before the first instruction. Next
the instructions for writing the subroutine onto drum are generated to­

- 192 -

gether with the cnecK sum* and writing is implemented. The instructions
for reading from drum are also generated and stored in the VZU diction­
ary at the N- and (N + Imposition locations from the beginning. After
this, the subroutine is again read into the OZU, summed, and the check
sums compared. When they do not agree, an emergency halt of the PP-2
occurs.

Clearly, the element following the KP in the Initial Information
will be the NP or NTs. For the NP, the loop is repeated. For the NTs,
tne address of the first TsU instruction is established. On the basis
of the KTs signal, the com’’-.ter not only sums and checks, but also
reads the entire program out in a form suitable for loading into the
computer (it is punched out).

Thus, we have been able to make the PP-2 and "Kiev" languages
quite close to one another. To make the representation more compact,
two arithmetic-operator Information elements are written into a single
location although it is permissible to code one element Into each loca­
tion for these operators; It is also permissible to cancel elements
erroneously coded twice. The words for all the other operators occupy
complete locations. The end-of-block Indicator is a one at the end of
the representation. As a result, when the PP-2 is arranged in blocks
of the Interchangeable built-in memory, the PP occupies a total of 300
octal (192 decimal) high-speed storage locations (without the block
for conversion to parenthesisless form).

The PP-2 Is realized In the form of two blocks — an arithmetic
operator that generates and writes arithmetic instructions and reduces
the number of working locations needed, and a block for processing the
remaining words of the PP-2 language, loading from punched cards, writ­
ing onto drum, etc.

Storage allocation. When the PP-2 is used, provision is made for
- 193 -

a typical memory allocation (see Table 4). It is first necessary to
estimate the length of the working program (RP) to be developed and,
if it is found that it will not fit in its entirety into high-speed
storage, the best division into subroutines must be found.

Since RP subroutines are stored in external memory (drum) and are
read out one above the other, the RP must contain a block that is loca­
ted at all times in OZU in order to control the process of reading and
executing the various manipulations of the information. This block is
called the central control (TsU). If the program as a whole will fit
into the OZU, then it is the TsU.

Information on memory allocation is stored in assembled words
(NK) of storage numbered 3000-3004:

3000

3001
*

/g

3002 k
3003 2m

Here m is the number of the subroutines used to determine the limit
of the VZU dictionary; G^ is the address of the beginning of the RP re­
presentation in the OZU. The drum number and location is coded into
NK 3004.

We next determine the length of the external information (VI) for
the RP, which includes the initial data and intermediate values of
variables. We shall assume that the VI contains n words; then Gp - Gn —
- n = Gq — 2m — n. After this, we find N — the number of operators in
subroutines or in the TsU, which gives the length of the OZU dictionary.
Then G$ = G^ — N = G$ — 2m — N. Now we can compute the length of the
zone for the external information of the PP-2. Two zones should fit in «

- 194 -

the interval (G^, G$). Thus taking the difference G$ — G2 and reducing
it to the nearest even [G$ — Gg], we obtain

The minimum value of G^ = 31, since locations 0001-0030 are used by the
PP-2 itself.
PP-2 Source Language

The types of words used to represent algorithms in PP-2 language
are shown in Table 5«

TABLE 5
Types of Words for PP-2 Source Language

Note, a, b) absolute addresses; x, y) od-
erator numbers; i) subroutine number; n) num­
ber of EI in nonstandard operator.

1) Entrance address; 2) exit address; 3) modified exit address; 4) mod­
ified entrance address; 5) one-term operation; 6) two-term operation;
7) comparison with sign; 8) comparison in absolute value; 9) comparison
for coincidence; 10) control transfer on sign of number; 11) operator

- 195 -

label; 12} subroutine label; 13) nonstandard-operator label; 14) print
out; 15) transfer in relative addresses I -* I; 16) transfer in symbolic
addresses U -* U; 17) transfer I -* U; 18) transfer U -* I; 19) beginning
of subroutine; 20) end of subroutine; 21) beginning of central control;
22) end of central control; 23) end of input-Information zone; 24) num­
ber of type of word; 25) information element (word); 26) symbol;
27) coding; 28) No. of entrance instruction of subroutine; 19) code in
’’ Kiev” language.

Types 1-6 are used to represent arithmetic operators.
Type 7-10 are used to represent logical operators. They differ

from their corresponding analogs in "Kiev" machine language only in
that the corresponding addresses contain the number of the operator to
which control Is transferred rather than the number of an instruction.

An operator label is placed before the operator to which control
is transferred and indicates its number.

The label for a subroutine is placed in the TsU and serves as a

signal for loading the subroutine whose number is specified in the la­
bel into OZU.

The label for a nonstandard operator is placed ahead of the group
of codes introduced into the RP directly in "Kiev’’ machine language
(they are not processed by the PP-2).

It is permissible to use words of types 7-10 in nonstandard opera­
tors only if they serve not to transfer control within the nonstandard
operator but to transfer control outside it. In this latter case, the
numbers of the operators are placed into the addresses. It is permissi­
ble to use machine operations carrying numbers of 20 or higher and this
in turn expands the PP-2 source language.

If type 16 permits replacement Dy an arithmetic operator aO + b*,
then types 17-18 play an important role in the language, since they
permit operation with instructions and, in particular, their transfer
or readdressing (the latter process is absolutely necessary for the

- J 96 -

floating-point mode used, whore the employment of group operations is
forbidden).

There are three words or three types of transfer associated with
T itself:

y-y; n-*y-, y+n,

where U is a symbolic address and I an absolute address.
Example. We are required to readdress the instruction cba x in ad­

dresses I and III (multiplication of a vector by a constant). In the
PP-2 language, the representation has the form

F (x) ab x c*T, (x, /) + /T. (/. *).

This representation corresponds to the program

Here is a constant of the form 00 0001 0000 0001. Instructions n +
+ 1 and n + 3 are superfluous, but it must be remembered that direct
readdressing is seldom required in the "Kiev" computer. Tne transfer
T^ may be used for initialization of instruction n.

The functions of types 20-23 are specified by their names. Since
type 23 Indicates the end of writing into a zone, it also occurs in the
final position.

A program may be written in symbolic form on one line. Here in
place of the address symbol a it is necessary to write the actual val­
ue of the address a, i.e., instead of a* we write 21a; in place of a*
we write 214,000 + a; one-term and two-term operations are represented
by their symbols In a, sin a, +, x, etc. For control transfers, it is
necessary to indicate in parentheses the arguments of the predicate
formula Sr2(abx). The same procedure is used when other words are writ­
ten.

We can write a program directly in PP-2 language on blanks for
punching. Here it is necessary to remember that information elements

- 197 -

for arithmetic operators are placed two in a location, while the indica­
tor for a second word in a location is written into address II. We
write a as follows:

 ■"! ■.......

03......0001 0001 a*

If the representation of an arithmetic operator ends with the
first half of the location, the second half is left empty. The other
words of the PP-2 language occupy complete locations.

The representation of the initial information is mechanically di­
vided into zones of equal length and the symbol (code 07) is placed
at the end of each zone. The zones are numbered from 0001.

The last zone may not be full, so that after the symbol, it
should be filled out with markers (zeros) to the prescribed number of
k markers.
Arithmetic Block of the PP-2

The arithmetic block of the PP-2 programs arithmetic formulas of
any level consisting of variables, two-term operations, and one-term
operations, written in parenthesisless Lukasiewicz form, from right to
left.

Preparation of external information for arithmetic block of PP-2.
The arithmetic block forms instructions for routines running in fixed-
point mode, so that scale factors must be provided by the programmer
in advance and introduced into the arithmetic formula.

Each variable of an arithmetic formula must be associated with a
storage location in the "Kiev" computer, which we shall call the en­
trance location, and a location must be selected in advance to receive
the result of the calculation using the given formula, and we shall
call this the exit location.

As an example, let us look at the formula

- 198 -

(23)

where a, b, c and d are certain numbers, and f the result of the calcu­
lation by the formula. We store these numbers, respectively, in loca­
tions H1, H2, H3, and while we place the result f into exit loca­
tion H*:

The representation of Formula (24) in parenthesisless Lukasiewicz
form will look like this:

HxHt+ In X : x //•. (25)

Coding elements of arithmetic formulas.
In order to load arithmetic formulas into the computer, each ele­

ment must be coded into 17 digit positions of a "Kiev" machine loca- t
tion. Thus, two elements will fit into each location of the "Kiev"
computer.

The Indicators permitting differentiation between variables and
operations are coded into the first five digit positions of each group.
The next 12 bits contain:

a) the address containing the variable if the coded element is a
variable;

b) the number of the first Instruction of the subroutine if the
coded element is a one-term operation;

c) the operation code If the coded element Is a two-term operation.
Exit locations are coded in the same manner as variables, except

that a special indicator is contained in the first five bit positions
(see Table 5). If H1, H^, and correspond to locations 0007,
0010, 0011, 0012, and H* corresponds to 0014, then the elements of
Formula (24) are coded separately in the following manner:

- 199 -

Ht 01 0007
Ht 01 Q010
— 03 0002

01 0007
01 0010

//. 01 0011
+ 03 0001

In 23 3116
X 03 0011

//< 01 0012
: 03 0012

X 03 0011
//• 21 0014

Storing two elements in each location, we obtain the following
octal numbers which together with the elements of the logical operators
of the problem form the external information for the PP-2.

K + 1 01 0007 0001
K + 2 03 0002 0001
K 4- 3 01 0010 0001
K + 4 03 0001 0023
K + 5 03 0011 0001

0010
0007
0011
3116
0012

K + 6 03 0012 0003 0011
K + 7 21 0014 0000 0000

TABLE 6

1) Number of operation to be executed.

200

The sequence of processing of the initial information and the re­
presentation of results for Formula (25) is shown in Table 6, where U
is the specifier of the input-information elements. Where boxes have
been struck out in Table 6, it indicates erasure of Information.
EXAMPLE OF PROGRAM COMPILED BY PP-2

We are required to compute the values of an improper integral using
the formula

7 * ■/. - f« -«/« jAJdttj' 9
for specified values of the parameters, where the A^ are certain numbers
and the function f(x) is given by the relationship

/fed—(x* + 4x) '* '*.(**)•
With the aid of the arithmetic block of the PP-2, a formula was program­
med for I at n = 0 and x. = xn for k = 1: n k 1

• (*i)»
where

/(*i) •* (*i + 41)’(r ”
DA

b» (*i) - + 2k) [X* “ 0 — 11.
L“i+ik J

Here Do Is a certain constant.
We rewite Iq in the form

/. - exp {in +lnD,4-2(£ — 1) In (x-HM+ln [12?——8tH-
■ +ln[2(*~ l) + (x + 2x)].)

After picking scale factors, storing the quantities in addresses H^l <
<; i £ 16), and reducing the numberof formulas, we ultimately obtain

201 -

/, - exp {In//, 4- In//, 4- HltHr\n (Hx 4- //n//,) 4- In IWHH' —
— //„//'//’//, - //,,//']} exp {In 4- 4- Z/ltWtH.

We use the Lukasiewicz representation for these formulas from
left to right:

X //,; 4- //'/Z.lnHJn +
+ //"//„ x H9Hl9 x + In x + H'Hl9 x //.//' x //' x //„ x -
— //'//'x//'x//uy - In + H”H19H9Hl9 xHt 4- + In 4- eff.

We note that the formulas are coded in the sequence in which they

must be programmed (H^, ..., respectively, 0001, ..., 0016):

K + 10 00 0000 0000 0000
1 01 OOH 0001 0002
2 01 0005 0003 0012
3 03 0002 0021 0021
4 01 0011 0001 0002
5 01 0012 0003 0011
6 01 0001 0003 0012
7 03 0001 0021 0020

K 4-20 01 0003 0023 3116
1 01 0004 0023 3116
2 03 0001 0001 0021

' 3 01 0012 0003 0011
4 01 0002 0001 0013

. 5 03 0011 0001 0001
6 03 0001 0023 3116
7 03 0011 0003 0001

K + 30 01 0020 0001 0016
I 03 0011 0001 0006
2 01 0020 0003 OOH
3 01 0020 0003 0011
4 01 0015 0003 0011
5 03 0002 0001 0020
6 01 0020 0003 0011
7 01 0020 0003 0011

K 4-40 01 0014 0003 0011
1 03 0002 0023 3116
2 03 0001 0001 0021
3 01 0012 0003 0011
4 01 0002 0001 0012
5 03 0011 0001 0001
6 03 0001 0003 0001
7 23 3116 0000 0000

K4-50 03 0001 0000 0000
K4-51 00 0000 0000 0000 *

2 23 3220 0021 0020
3 07 0000 0000 0000

The following working
program was obtained:

0050 12 0005 0002 0177
1 02 0177 0011 0021
2 11 0012 0002 0177

3 12 0001 0177 0177
4 01 0177 0011 0020
5 01 0003 0000 0002
6 30 3026 0057 3116
7 01 0003 0000 0177

0060 01 0004 0000 0002
1 30 3026 0062 3116
2 01 0003 0000 0176
3 01 0176 0177 0177
4 11 0012 0021 0176
5 11 0013 0002 0175
6 01 0001 0175 0175
7 01 0175 0000 0002

0070 30 3026 0071 3116
1 01 0003 0000 0175
2 11 0175 0176 0176
3 01 0176 0177 0177
4 11 0016 0020 0176
5 11 0020 0006 0175
6 11 0020 0175 0175
7 11 0015 0175 0175

0100 02 0175 0176 0176
1 11 0020 0020 0175
2 11 0020 0175 0175
3 11 0014 0175 0175
4 02 0175 0176 0176
5 01 0176 0000 0002
6 30 3026 0107 3116
7 01 0003 0000 0176

0110 01 0176 0177 0177
1 11 0012 0021 0176
2 11 0012 0002 0175
3 01 0001 0175 0175
4 01 0175 0176 0176
5 01 0076 0000 0002
6 30 3026 0117 3116
7 01 0003 0000 0176

0120 01 0176 0177 0177
1 01 0179 0000 0002
2 30 3026 0123 3220
3 01 0003 0000 0020

- 202 -

Manu­
script
Page
No.

[Footnotes]

163 The PP-AK was developed at the VTs AN UkSSR by L.P. Bystrova
under the guidance of Ye.L. Yushchenko [19].

186 The PP-2 was developed by L.N. Ivanenko under the guidance of
Ye.L. Yushchenko [8]. N.M. Grishchenko also participated in
programming of the arithmetic operator.

«

- 203 -

APPENDICES
Appendix 1

CONTROL CONSOLE (PU)
In this appendix, we describe only those control and signal ele­

ments with which it is necessary to deal in debugging programs and sol­
ving problems. Elements involved in checking on the correctness of com­
puter operation are excluded from the description.

The control console (PU) consists of an oblique signal panel (Fig.
3) and a horizontal control panel (Fig. 4).

On the signal panel there are monitoring lights associated with
various elements of the control unit (UU), arithmetic unit (AU), and
storage unit (ZU). These lights enable us to follow the operations oc-
curing at a given instant in the various machine elements.

The set of signal lights in the top row Sm are connected to the
adder and indicate its operation. In reading the content of the adder,
we should remember that the numbers in the adder are represented in a
modified ones complement. Lights Zn2S and ZnlS which represent the sign
of the number in the adder serve simultaneously to signal an overflow
of the digit format: if the number in the adder is greater than or equal
to +1, the lamps indicate 10, while if it is less than or equal to —],
they indicate 01. In the absence of an overflow in these digit position.'-,
00 appears for a positive number and 11 for a negative number. Light
ZnR2 is connected to the sign bit of the second-number register and in­
dicates the sign of the number selected in address II.

On the control console there are three switchable locations (as-
- 204 -

iiimuMi nin

sembled words NK) 3000, 3001, 3002 connected in parallel with the same
locations at the PZU cabinet. Each console location is controlled by a
switch. When the switch is on (in the upper position) the console loca­
tion operates; when it is off, the corresponding PZU location is opera­
tive. Where all NK are used in a problem, it is necessary to set up the
words for the problem on the NK panels, and to set up at the console
the instructions for loading, correcting locations, etc. After loading,
the NK switch is turned off. If the program makes use of NK that must
change in the course of calculations, they should be set up at the PU.

The set of 32 lights labeled KOp transmit signals on the operation
being performed at the given instant. All lights of this set are ar­
ranged in order of coding of the operations, and are provided with the
operation symbols.

The TrVyb light goes on when the computer is exchanging information
with external storage devices, namely: punched tape (punched cards),
magnetic tape, or magnetic drum.

The address involved in execution of the given cycle of an instruc­
tion is transmitted to the A-register (RA) indicator. When this is done,
the A-register is set to zero, so that its content is not used in de­
bugging.

The link-register (RV) indicator block characterizes the state of
the link register. The RV is set to 0 when the PRV instruction is exe­
cuted.

The TrPr light (conditional-jump indication flipflop) goes on when
an instruction generating the conditional-jump indication is executed
if this indication is generated. The Avt light goes on when the computer
is running automatically. Light Zn goes on when an overflow occurs.

The RA signal-light blocks and RTs loop register characterize the
state of the A and Ts registers at the time of machine operation.

- 205 -

I

Fig. 3* Signal panel. 1) Nach; 2) Avt: 3) Got; 4) uval; vzl; 6) uva2;
7) vz2; 8) IKOp; 9) uva3; 10) vz3; 11) uva4; 12) vz4; 13) Ost.

Fig. 4. Control panel. 1) Skip; 2) Avt; 3) cycle; 4) pulse: 5) normal
operation; 6) load: 7) set at PU; 8) prepare; 9) start; 10) N instruc­
tion; 11) halt; 12) address.

The TsU signal-light block is designed for pulse-by-pulse monitor­
ing of computer operation. Lights ival, iva2, and iva3 signal the trans­
mission to the storage unit of selection pulses for the contents of ad­
dresses I, II, and III, respectively, of an instruction, lights vzl and
vz2 indicate the end of entry of the contents of the corresponding ad­
dresses into the arithmetic unit, light vz3 indicates end of writlnr
of a number into address III, lights iva4 and vz4 indicate transfer of
the pulse for selecting the executed instruction and reception of this
instruction at the control unit, while light IKOp indicates termination
of execution of an arithmetic-unit operation.

The UVK (instruction-transfer device) signal-light block -hows the
- 206 -

content of instruction counter S — the number of the instruction being
executed. When reading the number of an instruction, we must remember
that it will change when the arithmetic unit completes execution of the
preceding instruction (signal IKOp goes on).

RK signaling Indicates the instruction register K has received an
instruction to be executed. The Instant of arrival of the instruction
at the register coincides with the instant of operation of vz4. For
reading convenience, the RK indicator is grouped in accordance with the
instruction format. At the instant a halt occurs, the RK will contain
the executed instruction while UVK will indicate the number of the next
Instruction and for UPCh, UPP, and 0G0 instructions the number of the
executed instruction, and for VI, V2, Pech, MBZ, and MBCh instructions,
a zero. Thus for these last Instructions it is not possible to order a
halt basedon the Instruction number.

Selection and execution of an Instruction occurs in the following
order:

a) in accordance with the number written into the UVK, an instruc­
tion is taken from storage and placed into the Instruction register of
the control unit. This instruction is written into the RK. The beginning
and end of selection is indicated by lights iva^ and vz4;

b) the content of address I of the instruction written into the
RK is taken. The address number is written into RA. The beginning and
end of selection are marked by lights Ival and vzl. The RA Is set to
zero;

c) process b) is repeated for address II;
d) the operation called for by the instruction selected is execu­

ted. Conclusion of execution is marked by lighting of IKOp;
e) the UVK is changed for selection of the next instruction. At

the same time, the result of operation execution is transferred to stor-
- 207

age. The beginning and end of the transfer are marked by lights Iva 3 and *
vz3;

f) the machine proceeds to execute the operations specified in pro­
cess a).

Lights Zn and Cht Indicate the operating mode: write or read. The
signals for KR (rotary switch), SchMI (marker-pulse counter), Nach and
Got (begin and prepare) monitor code traffic.

The control panel (Fig. 4) has a switch Instruction register which
may be used to assembly an arbitrary instruction. This instruction reg­
ister makes it possible to execute the desired instruction fiom the con­
sole.

Button UO (zero set) is designed to set all unit registers to zero
when the machine is first started and when various operations are execu­
ted from the control console.

The NR-B1 UVK switch Is used to block changes in the content of the
instruction counter, which permits multiple execution of the same in­
struction. The UO SchA blocks operation of SchA, RTs and RV. This maker,
it possible when a program is being debugged to repeat segments within
loops and standard routines, since when the UO button is pushed and
switch UO SchA is on, the RV and RTs will not be set to zero.

After control has Jumped to the desired program segment, the
switch Is turned off for further operation with the address counter or
link register.

Switch Pch connects the readout devices for high-speed printout
slow printout, or automatic reading.

The Avt-Cycle-Pulse switch is designed to switch the machine Into
different operating modes. The Avt position of this switch corresponds
to automatic operation, i.e., automatic execution of the program that
has been loaded into the computer; the Cycle position causes execution

- 208 -

of the program in cycles, i.e., instruction-by-instruction; the Pulse
position causes execution of the program by instruction-cycle components.
As we have already mentioned, execution of an instruction occurs in
four pulses: selection of instruction, selection of address I, selec­
tion of address II, and transfer to address with simultaneous setting
of control unit to execute the next instruction. While when a program
is executed by cycles, an entire instruction is executed when switch K
is operated once, when instructions are executed by pulses, it is neces­
sary to operate the switch four times in accordance with the listed
cycle pulse components.

The normal operation — set from PU switch is used to switch the
machine so that it will execute the instruction set up at the control
console (set from PU position) or will operate normally (normal opera­
tion position), i.e., so that it will execute the program written into
machine internal storage.

The Halt button is used to stop the computer. When this button is
pushed, the machine stops after execution of the instruction contained
in the instruction register at the instant the button is pushed.

The halt switch has three positions: neutral, halt on instruction
number and halt on address III. Together with the switch halt register,
this switch is designed to set up the "halt on address III” and ’’halt
on instruction number” operations.

The instant the machine halts, the RK contains the code for the
operation just executed, and Sm the result of this operation; UVK con­
tains the number of the next instruction, while for control-transfer-
type operations (UPP, UPCh) it shows the number of the instruction exe­
cuted.

During a halt operation, the results of the preceding instruction
will be left in Sm. At the PU there is a switch that blocks an overflow

- 209 -

’’with skip,” and this permits us, skipping one instruction to continue
machine operation when an overflow occurs. When the switch is on, a
special button will erase the OZU core array.
Order of Execution of Operations Associated with Program Debugging and
Problem Solution

1. Initial program loading:
a) place punched tape (or punched-card deck);
b) set Avt-Cycle-Pulse switch to Avt position, and normal operation

— set from PU switch into set from PU position;
c) set up load Instruction 20 ap (for number loading) or 21 (for

instruction loading) on instruction switch register; a and P are the in­
itial and final program locations;

d) turn on loading device;
e) push U0 button;
f) operate switch K to load program.
The tape should be run through completely. The remainder is a char­

acteristic of the given tape, and it should be stored.
With the method considered, the computer will halt after loading

is concluded. With this method, following loading it is necessary to
make a special transition to program execution. It is possible to set
up the load instruction in assembled storage, however, together with a
control-transfer instruction, to transfer control to the address at
which the required instruction has been set up and thus proceed to exe­
cute the loaded program with no further switching operations.

To check the content of a storage location:
a) set the Avt-cycle-pulse switch into the Pulse position.
b) set the normal operation-set from PU switch into the normal op­

eration position;
c) in address III of the switch instruction register set up the

210

f

number of the required location;
d) push button UO;
e) operate switch K and read the content of the location called

from the Sm signal block at the control console.
3« To execute an instruction written into storage:
a) depending on the mode in which the instruction is to be executed,

set the Avt-Cycle-Pulse switch. The Avt position corresponds to automa­
tic execution of the program, the Cycle position to execution of the
program instruction-by-instruction, and the Pulse position to execution
of the program by instruction-cycle components;

b) perform the operation specified in points b, jc, d under the des­
cription of initial loading;

c) operate switch K with the Avt-Cycle-Pulse switch in the Avt
position, thus starting the computer on automatic operation; in the
Cycle position, operation of switch K causes execution of one instruc­
tion, and to execute the next Instruction we must again operate the
switch; in the Pulse position, we must operate K four times to execute
a single instruction.

4. To execute an instruction from the control console:
a) set up the required instruction on the control-console instruc­

tion switch register;
b) set the Avt-Cycle-Pulse switch to the Cycle position;
c) set the normal operation — set from PU switch into the set from

PU position;
d) push UO button;
e) operate switch K to execute the instruction that has been set

up on the instruction switch register. _
5. To correct the content of a location:
a) set up the required location content in assembly storage;

- 211 -

b) at the control console, set up on the instruction switch regis­
ter the instruction to transfer the code set up in assembly memory to
the required location;

c) perform the operation specified in points b-e under the descrip­
tion of execution of an Instruction from the control console.

6. Halt on address III and halt on Instruction number:
a) set the halt switch to the position corresponding to the re­

quired halt mode;
b) set up the required address or Instruction number on the halt,

location switch register;
c) when the computer Is started in the automatic mode, a halt will

occur in accordance with the specified regime.
The correctness of the loading of a program or separate segments

of a program may be checked either by sequential checking of the seg­
ment or by a octal printout of this segment by a readout instruction
executed from the console.

When the computer is running in the automatic mode, it may be halt­
ed by pushing the Halt button. By operating switch K, it is possible to
start the computer to continue the calculation.

212

I

Appendix 2
TESTS
Control Unit (UU) Test
Instructions
Instructions
Instructions
Instructions

0001-0006 -
0163-0173 -
0241-0250 -
0251-0275 -

Instructions
Instructions
Instructions
Instructions
Instructions
Instructions
Instructions
Instructions
Instructions

0276-0277 -
0300-0303 -
0304-0425 -
0426-0510 -
0511-0565 -
0566-0617 -
0620-0641 -
0643-0662 -
0700-0706 -

check summation of program.
check multiplicaton operation with indication
of group operation (GO) in all addresses.
check operation of instruction loading device
(UVK) as counter (from 1st to 10th digit).
check operation of UVK for transfer to it of
word consisting of all ones and a single zero
and a word consisting of all zeros and a sin­
gle one (from 1st to 10th digit).
check 11th bit of UVK.
check 11th bit of link register (RV).
check A-register and address adder (SmA) using
words consisting of all ones and a single zero,
check operation of loop register (RTs).
check transfers to SmA.
check operation of SmA.
check operation of GO indication in control­
transfer operations.
check operation of normalization operation with
GO indication in all addresses.
check operation of GO indication in control­
transfer operations with one present in 11th
bit.

0001 01 0000 0000 1220
2 26 0706 0000 0000
3 07 4001 1220 1220
4 27 4001 0003 0005
5 22 1220 1220 0006
6 33 00 I I 100 0*0
7 01 0075 0000 1524

0010 01 0076 0000 1525
1 01 0077 0000 1526
2 01 0100 0000 1527
3 01 0101 0000 1530
4 01 0102 0000 1247
5 01 0103 0000 1250
6 01 0104 0000 1251
7 01 0105 0000 1252

0020 01 0106 0000 1253
1 01 3035 0000 0107
2 01 3035 0000 0110
8 01 3035 0000 0111
4 01 3035 0000 0112
5 01 3035 0000 0113
6 01 3035 0000 0114
7 01 3035 0000 0115

0030 01 3035 0000 0116
1 01 3035 0000 0117
2 01 3035 0000 0120
3 01 3035 0000 0121
4 01 3035 0000 0122
5 01 3035 0000 0123
6 01 3035 0000 0124
7 04 0000 0002 0052

0040 02 0000 0000 0107
1 (5 02 0000 0052
2 02 0000 0000 0110

3 16 0002 0000 0052
4 02 0000 0000 0111
5 31 0000 0046 0052
6 02 0000 0000 0112
7 30 0000 0000 0052

0050 02 0000 0000 0113
1 04 0000 0000 0053
2 22 0107 0124 0006
3 02 0000 0000 0114
4 05 0000 0000 0056
5 22 0107 0124 0006
6 02 0000 0000 0115
7 16 0000 0000 0061

0060 22 0107 0124 0006
1 02 0000 0000 0116
2 3 0002 1 0
3 02 0000 0000 0117
4 30 0002 1527 0066
5 22 0107 0124 0006
6 02 0000 0000 0120
7 32 0000 0000 0000

0070 26 0124 0107 0000
1 31 4000 0074 0072
2 27 4001 0071 0073
3 31 3000 0125 0007
4 22 0107 0124 0006
5 33 0000 0000 0000
6 02 0000 0000 0123
7 04 0000 0000 1252

0100 02 0000 0000 0121
1 30 0002 1250 0067
2 33 0000 0000 0000
3 02 0000 0000 0122
4 04 0000 0000 1525

- 213 -

5 02 0000 0000 0124
6 04 0000 0000 0070
7 00 0000 0000 0000

0110 00 0000 0000 0000
1 00 0000 0000 0000
2 0' 1 0000 (TOT
3 00 0000 0000 0000
4 00 0000 0000 0000
S 00 0000 0000 0000
6 00 0000 0000 0000
7 00 0000 0000 oooo,

0120 00 0000 0000 0000
1 00 0000 0000 oooo
2 00 oooo oooo oooo
3 00 oooo oooo oooo
4 00 oooo oooo oooo
6 01 120r OOOO J52S
6 01 0210 OOOO 1252
7 34 0212 OOOO 0215

0130 16 0215 0207 0132
I 33 (TOO 0 DOOOC
2 34 0213 OOOO 0215
3 16 0215 0210 0135
4 3 ((X A
5 34 0214 OOOO 0215
6 16 0215 0011 0140
7 33 OOOO OOOO OOOO

0140 26 1525 1525 0142
1 33 OOOO OOOO OOOO
2 26 1252 1252 0144
3 33 noo3 (0 OOOO
4 01 OOOO OOOO 0216
5 26 0005 OOOO OOOO
6 01 4207 0216 02)6
7 27 4001 0146 0150

0150 16 0216 0217 0152
I 33 OOOO OOOO OOOO
2 26 1777 0525 OOOO
3 27 5252 0154 0155
4 33 OOOO OOOO OOOO
5 26 1525 0252 OOOO
6 27 5253 0157 0160
7 33 OOOO OOOO OOOO

0160 26 1000 01 0
1 27 4001 0162 0163
2 33 OOOO OOOO OOOO
3 26 1775 1253 OOOO
4 01 3042 OOOO 4000
5 01 3042 OOOO 4001
6 10 4000 4001 4002
7 16 4002 3043 0171

0170 33 OOOO OOOO OOOO
1 01 OOOO OOOO 4000
2 01 OOOO OOOO 4001
3 27 4002 0164 0174
4 31 3000 0240 0125
5 00 OOOO OOOO OOOO
6 00 OOOO OOOO OOOO
1 00 OOOO oooo oooo

0200 00 OOOO OOOO OOOO
I 00 OOOO OOOO oooo
2 00 0000 0000 OuOO
3 00 OOOO oooo oooo
I (> DO (JOO C DO

5 00 OOOO OOOO OOOO
6 00 OOOO OOOO OO I
7 00 OOOO OOOO 0001

0210 0 1 Ia> OOOO 111
I 00 OOOO OOOO 0003
2 00 OOOO 1525 OOOO
3 00 OOOO 1252 OOOO
4 00 OOOO 0211 OOOO
5 00 OOOO OOOO oooo

6 00 OOOO oooo oooo
7 00 OOOO 2777 0006

0220 01 3043 OOOO 0200
• 1 16 3043 0200 0245

2 01 3044 OOOO 0200
3 16 3044 0200 0251
4 16 OOOO OOOO 0254
5 16 OOOO OOOO 0256
6 16 OOOO OOOO 0260
7 *6 1 OOOO 0262

0230 16 OOOO OOOO 0264
1 16 OOOO OOOO 0266
2 16 OOOO OOOO 0270

0233 16 OOOO OOOO 0272
4 16 OOOO OOOO 0274
5 16 OOOO OOOO 0276
6 00 OOOO OOOO 0025
7 32 OOOO OOOO OOOO

0240 01 0170 OOOO 0001
1 01 0220 OOOO 0777
2 01 0221 OOOO 1000
3 01 0170 OOOO 1001
4 04 OOCO OOOO 0777
5 01 0222 OOOO 1777
6 01 0223 OOOO 0001
7 01 0170 OOOO 0002

0250 04 OOOO OOOO 1777
1 01 0170 OOOO 1777
2 01 0224 OOOO 1776
3 04 OOOO OOOO 1776
4 01 0225 OOOO 1775
5 04 OOOO OOOO 1775
6 01 0226 OOOO 1773
7 04- OOOO OOOO 1773

0260 01 0227 OOOO 1767
1 04 OOOO OOOO 1767
2 01 0230 OOOO 1757
3 04 OOOO OOOO 1757
4 01 0231 OOOO 1737
5 04 OOOO OOOO 1737
6 01 0232 OOOO 1677
7 04 OOOO OOOO 1677

0270 01 0233 OOOO 1577
1 04 OOOO OOOO 1577
2 01 0234 OOOO 1377
3 04 OOOO OOOO 1377
4 01 0235 OOOO 0777
5 04 OCJO OOOO 0777
6 01 0170 OOOO 1777
7 03 0236 0224 1776

0300 30 3026 1776 0237
1 03 0236 0225 1775*
2 30 3026 1775 0237
3 03 0236 0226 1773
4 30 3026 1773 0237
5 03 0236 0227 1767
6 30 3026 1767 0237
7 03 0236 0230 1757

0310 30 3026 1757 0237
1 03 0236 0231 1737
2 30 3026 1737 0237
3 03 0236 0232 1677
4 30 3026 1677 0237
5 03 0236 0233 1577
6 30 3026 1577 0237
7 03 0236 0234 1377

0320 30 3026 1377 0237
1 03 0236 0235 0777
2 30 3026 0777 0237
3 01 0170 OOOO 1147
4 30 3026 0325 3146
5 01 0170 OOOO 1043

214

0326 01 0330 0000 0001
7 30 3026 3043 0237

0330 04 0000 0000 0331
1 01 0000 0000 1777
2 01 3042 0000 1776
3 26 0000 1776 0000
4 16 3042 4000 0336
5 33 0000 0000 0000
6 16 4000 3042 0340
7 33 0000 0000 0

0340 01 3042 0000 1775
1 26 0000 1775 0000
2 16 3042 4000 0344
3 33 0000 0000 0000
4 16 4000 3042 0346
5 33 0000 0000 0000
6 01 3042 0000 1773
7 26 0000 1773 0000

0350 16 3042 4000 0352
I 33 0000 0000 0000
2 16 4000 3042 0354
3 33 0000 0(0 OK)
4 01 3042 0000 1767
5 26 0000 1767 0000
6 16 3042 4000 0360
7 33 0000 0000 0000

0360 16 4000 3042 0362
1 33 0000 0000 0000
2 01 3042 0000 1757
3 26 0000 1757 0000
4 16 3042 4000 0366
5 33 0000 0006 0000
6 16 4000 3042 0370
7 33 0000 0000 0000

0370 01 3042 0000 1737
1 26 0000 1737 (k »
2 16 3042 4000 0374
3 33 0000 0000 0000
4 16 4000 3042 0376
5 33 < 00 0(0 0000
6 01 3042 0000 1677
7 26 0000 1677 0000

0400 16 3042 4000 0402
1 33 0000 0000 0000
2 16 4000 3042 0404
3 33 0000 0000 0000
4 01 3042 0000 1577
5 26 0000 1577 0000
6 16 3042 4000 0410
7 33 0000 0000 0000

0410 16 4000 3042 0412
I 33 0000 0000 0000
2 01 3042 0000 1377
3 26 0000 1377 0000
4 16 3042 4000 0416
5 33 0000 jOOOO 0000
6 16 4000 3042 0420
7 33 0000 0000 0000

0420 01 3042 0000 0777
0421 26 0000 0777 0000

2 16 3042 4000 0424
3 33 0000 0000 0000
4 16 4000 3042 0426
5 33 0000 0(0
6 01 0000 0000 1777
7 01 3035 0000 1776

0430 26 1776 1770 0000
1 27 4001 0431 0432
2 16 4JOO 3035 0434
3 33 0000 0000 0000
4 01 3035 0000 1775
5 26 1775 1770 0000
6 27 4001 0436 0437
7 16 3035 4000 0441

0440 33 0000 0000 0000
1 01 3035 0000 1773
2 26 1773 1770 0000
3 27 4001 0443 0444
4 16 3035 4000 0446
5 33 0000 0000 0000
6 01 3035 0000 1767
7 26 1767 1763 0000

0450 27 4001 0455 0451
I 16 4000 3035 0453
2 33 0000 0000 0000
3 01 3035 0000 1757
4 26 1757 1753 0000
5 27 4001 0455 0456
6 16 4000 3035 0460
7 33 0000 0000 0000

04GO 01 3035 0000 1737
1 26 1737 1733 0000
2 27 4001 0462 0463
3 16 4000 3035 0,65
4 33 0000 0000 0000
5 01 3035 0000 1677
6 26 1677 1673 0000
7 27 4001 0467 0470

0470 16 4000 3035 0472
I 33 0000 0000 0000'
2 01 3035 0000 1577
3 26 1577 1573 0000

.4 27 4001 0474 0475
5 16 4000 3035 0477
6 33 0000 0000 0000
7 01 3035 0000 1377

0500 26 1377 1374 0000
1 27 4001 0501 0502

• 2 16 4000 3035 0504
3 33 0000 0000 0000
4 01 3035 0000 0777
5 26 0777 0770 0000
6 27 4001 0506 0507
7 16 4000 3035 0511

0510 33 0000 0000 0000
1 26 0000 0001 0000
2 16 0002 4001 0514
3 33 0000 0000 0000

0514 16 0004 4003 0516
5 33 0000 0000 0000
6 16 0010 4007 0520
7 33 0000 0000 0000

0520 16 0020 4017 0522
1 33 0000 0000 0000
2 16 0040 4037 0524
3 33 0000 0000 0000
4 16 0100 4077 0526
5 33 0000 0000 0000
6 16 0200 4177 0530
7 33 0000 0000 0000

0530 16 0400 4377 0532
1 33 ' >0 OK) 000
2 01 3043 0000 1000
3 16 3043 4777 0535
4 33 0000 0000 0000
5 26 0000 0003 0000
6 16 4001 0004 0540
7 33 0000 0000 0000

0540 26 0000 0007 0000
1 16 4001 0010 0543
2 33 0000 0000 0000
3 26 0000 0017 0000
4 16 4001 0020 0546
5 33 0000 0000 0000
6 26 0000 0037 0000
7 16 4001 0040 0551

0550 33 0000 0000 0000
1 26 0000 0077 0000

215

2 16 4001 0100 0664
3 33 0000 0000 0000
4 26 0000 0177 0000
5 16 4001 0200 0557
6 33 0000 0000 0000
7 26 0000 0377 0000

0560 16 4001 0400 0562
1 33 Cl 0000 01
2 26 0000 0777 0000
3 16 MX X) 0565
4 33 0000 < XX) 00 C
5 31 3000 0566 0240
6 26 0000 0003 0000
7 16 4003 0006 0571

0570 33 OO') 0000 OK)
i r oooo 7 oooo
2 16 0016 4007 0574
3 33 0000 0000 OOOO
4 26 OQO0 0017 0000
5 16 4017 0036 0577
6 33 OOOO OOOO OOOO
7 26 000 0(7 OOOO

0600 16 0076 4037 0602
1 33 OOOO OOOO OOOO
2 26 OOOO 0077 0 ,
3 16 4077 0176 0605
4 33 OOOO OOOO OQQO
5 26 0 11 7 OOOO
6 16 0376 4177 0610

0607 33 OOOO OOOO OOOO
0610 01 3035 OOOO 0776

I 26 OOOO 0377 OOOO
2 16 4377 3035 0614
J 33 O(XX) 0 ' OOOO
4 01 3035 OOOO 1776
5 26 OOOO 0777 OOOO
6 16 3035 4777 0620
7 33 OOOO OOOO OOOO

0620 26 OOOO 1000 OOOO
I 01 0664 OOOO 1623
2 04 OOOO OOOO 4623
3 33 OOOO OOOO OOOO
4 01 0665 OOOO 1626
5 05 OOOO OOOO 4626
6 33 OOOO OOOO OOOO
7 01 0666 OOOO 1631 .

0630 16 OOOO OOOO 4631
I 33 OOOO OOOO OOOO

2 01 0667 OtXX) 1634
3 31 3036 0634 4634
4 33 OOOO OOOO OOOC
5 01 0670 OOOO 1637
6 31 3035 4637 0637
7 33 OOOO OOOO OOOO

0640 Cl 3146 OOOO 1642
1 30 3026 0643 4642
2 33 OOOO OOOO OOOO
3 35 0671 1777 4000
4 16 1777 0672 0646
5 33 OOOO OOOO OOOO
6 16 1000 0673 0650
7 33 OOOO OOOO OOOO

0650 35 0674 4000 1777
1 16 1000 0675 0653
2 33 OOOO OOOO OOOO
3 16 1777 0676 0655
4 33 OOOO OOOO OOOO
5 01 0677 OOOO 1000
6 35 4000 1776 1777
7 16 1776 3026 0661

0660 33 OOOO OOOO OOOO
1 16 1777 0 >77 0663
2 33 OOOO OOOO OOOO
3 04 OOOO OOOO 0700
4 04 OOOO OOOO 0624
5 04 00I OOOO 0627
6 04 OOOO OOOO 0632
7 04 OOOO OOOO 0635

0670 04 OOOO OOOO 0640
1 05 2525 2525 2525
2 20 OOOO OOOO 0001
3 12 5252 5252 5252
4 21 2525 2525 2525
5 20 OOOO OOOO 0003
6 32 5252 5252 5250
7 12 5252 5252 5252

0700 26 OOOO 0140 OOOO
1 30 3026 0702 7006

0702 26 OOOO 0)37 OOOO
3 30 3026 0706 0704
4 31 0670 7007 0705
5 33 OOOO OOCO OOOO
6 31 3000 0007 0566

HK:
3^06 33 OOOO OOOO OOOO
3007 33 OOOO OOOO OOOO

Storage Unit (ZU) Tests

Addresses 0001-0013 —
Instructions 001A-0021 —

constants.
check summation of test.

First OZU Test

Instructions 0022-0027 — take word for writing.
Instructions 0030-0032 — write code into OZU.
Instructions 003^-0037 — read code and check.
Instructions 0040-00^2 — number-of-readings counter.
Instruction 00^3 — proceed to write next constant.

Second OZU Test ("tickling” and partial selection)

Instructions 0046-00^7 — select constants for writing into OZU core
array and into diagonal locations.

Instructions 0050-0052 — write into array.

216

Instructions 0053-0061 - write into diagonal locations with multiple
readout (”tickling”).

Instructions 0062-0070 — check nondiagonal locations.
Instructions 0072-0073 — change writing constants.
Third OZU Test
Instructions 0100-0103 —
Instructions 0104-0110 —
Fourth OZU Test
Instructions 0122-0136 —
Instructions 0140-0155 —

write word 1010 ... into OZU.
read for x«

write "traveling” one or zero,
read from OZU with check.

0001 37 7777 7777 7777
2 25 2525 2525 2525
3 12 5252 5252 5252
4 01 0001 0001 0001
5 33 0000 0000 0777
6 01 0004 0000 0020
7 01 0000 0000 0020

0010 00 0041 9041 0000
1 26 1777 1737 0000
2 00 0040 0040 0000
3 26 2000 1740 0000
4 01 0000 0000 0210

0015 26 0166 0000 0000
6 07 4001 0210 0210
7 27 4001 0016 0020

0020 22 0210 0210 0021
I 33 0000 0000 0000
2 31 3001 0025 0023
3 01 3002 0000 0020
4 05) 0000 0030
5 01 0007 0001 0026
6 01 0000 0000 0020
7 03 3010 0026 0026

0030 26 1777 0177 0000
0031 01 0020 0000 4001

2 27 4001 0031 0033
3 03 3011 3200 0036
I 26 000 0 ?C X)

5 16 4000 0020 0037
6 33 0000 1000 0000
7 27 4001 0035 0040

0040 03 3012 0036 0036
1 05 0036 0165 0034
2 31 3001 0043 0044
3 05 0026 0006 0026
4 31 3000 0045 0022
5 01 0000 0000 0014
6 01 0(0 0000 (20
7 01 3036 0000 0021

0050 26 1777 0200 0000
1 01 0 0000 4000
2 27 4001 0051 0053
3 26 1573 0000 0000
4 01 0021 0000 4204
5 03 0000 3200 0015
6 07 4204 4204 0000
7 03 3012 0015 0015

0060 05 0015 0005 0056

1 27 4041 0054 0062
2 01 0077 0000 0063
3 26 0245 0205 0000
4 16 (Xi (0066
5 33 0000 0002 0000
6 27 4001 0064 0067
7 03 0010 0063 0063

0070 05 0063 0011 0063
1 31 0014 0072 0076
2 02 0000 0000 0014
3 01 0000 0000 0021
4 01 3036 0000 0020
5 05 0000 0000 0050
6 31 3000 0100 0045
7 26 0245 0205 0000

0100 01 0116 0000 0105
] 26 1600 0000 0000
2 01 0002 0000 4200
3 27 4001 0102 0104
4 03 3011 0065 0107
5 26 0240 0200 0000
6 16 4000 0002 OHO
7 33 0000 0000 0000

0110 27 4001 0106 0111
1 03 3012 0107 0107
2 05 0107 0166 0105
3 03 0012 0105 0105
4 05 0105 0013 0104
5 31 3000 0117 0100
6 26 0240 0200 0000
7 01 0000 0000 0014

0120 01 3012 0000 0017
I 01 0017 0000 0021
2 26 0000 0200 0000
3 01 00?' 0000 0020
4 3! 00., 0126 0125
5 01 3036 0020 0020
6 01 0020 0000 4000
7 16 0021 3042 0133

0130 16 0021 3026 0135
I 13 3012 0021 0021
2 05 0000 0000 0136
3 01 3026 0000 0021
I 05 000 0000 1136

5 01 3012 0000 0021
6 27 4001 0123 0137
7 01 0017 0000 0021

0140 26 0000 0200 0000

217

I
I 01 0021 0000 0020
2 31 0014 0144 0143
3 H 30 i < 320 32
4 16 4000 0020 0146
5 33) 14 000
6 16 0021 3042 0152
7 16 0021 3026 0)54

0150 13 3012 0021 0021
1 05 00 <100 0155
2 01 3026 0000 0021
3 05 0000 0000 0155

Arithmetic Unit (AU) Tests
Examples for AU check

4 01 3012 0000 0021
5 27 4001 0141 0156
6 13 3012 0017 0017
7 16 0017 3042 0161

0160 05 0000 0000 0121
1 31 0014 0162 0164
2 02 00((00 314
3 05 0000 0000 0120
4 31 3000 0022 0117
5 33 0000 0001 0077
6 33 0000 0003 0177

Binary codesv instruction
(0) V (1)- (1) 0043—0045

(01) v <0) - (01) 0046—0053
(1) V (D-(i) 0054-0056
(1) A (0)-(0) 0057-0061.
(0) A (0)-(0) 0062-0064
(0) A (10) = (0) 0065—0067
(I) A <>) = (!) 0070-9072

(01)«(10) - (0) 0073—0075
(10) a (01) = (0) 0076—0100
(01) a (01)-(1) 0101—0103
(10) a (10) - (1) 0104-0107

octal codes
05(25) + 05(25) = 12(52) 0110-0112

(25) + 12(52) = 05(25) 0113-0115
07 5736 7573 6745 + 07 5736 7573 6745 -

= 17 36757367 5712 0116—0120
05 (25)+ 32 (52) = (25) 0121—0123
12(52) +(25) = 05 (25) 0124-0126

0001000400 2001 +30004002001000-
= 277737 75776777 0127-0131

202001 00040020 + 00 400200100040 -
= 00200100040020 0132-0134

1 (0) + (0) 1 — (0) 1 0135—0142
1 (0) + (0) 20 = 0(20) 0143—0145

1(0)+ 00010004002001 =
= 00 0100 0400 20Q 0146-0150

17 36757367 5712+ 173675 7367 5712-
= 16 7573 67573624 0151-0154

12(52) — 12(52)= 1(0) 0155—0157
(25)-(25)= 1(0) 0160-0162
12(52)C4K (25) = 3 (7) 0163-0165
(0) CaK 02 (52) = 02 (52) 0166—0170
2(0)1 x 3(0) = (0)1 0171-0173
3(0)1 x 0(7) = 3(0) 0174—0176
0(7) x (07) = 1(7)5 0177—0201
05(25) x 32 (52) = 23 (43) 0202—0204
01 (0) : 03(0)-05 (25) 0205—0207

200020 (0) : 000 (16) 0 = (2) 00 0210-0212

Instructions
Instructions

021^-0226— formation of pseudorandom number.

02^0-02^5? — iterative division.
Instructions 0256-03^5 — constants.
() — represents number in period.

218

0001 25 5564 3455 4124
2 12 5252 5252 5252
3 25 2525 2525 2525
4 05 2525 2525 2525
5 32 5252 5252 5252
6 07 5736 7573 6745
7 17 3675 7367 5712

0010 00 0100 0400 2001
1 30 0040 0200 1000
2 20 2001 0004 0020

0013 00 4002 0010 0040
4 00 2001 0004 0020
5 00 0000 0000 0001
6 < 0 (0000 0
7 27 7737 7577 6777

0020 16 7573 6757 3624
1 20 0000 0000 0001
2 30 0000 0000 0000
3 30 0000 0000 0001
4 17 7777 7777 7775
5 23 4343 4343 4343
6 01 0000 0000 0000
7 03 0000 0000 0000

0030 20 0020 0000 0000
1 00 0160 0000 0000
2 22 2222 2222 2200
3 27 7777 7777 7777
4 01 0600 0000 0367
5 26 0346 0(00 0000
6 07 4002 0367 0367
7 27 4001 0036 0040

0040 16 0367 0001 0351
1 22 0367 0367 0256
2 01 3066 0000 0353
3 14 0000 3036 0347
4 16 0347 3036 0046
5 33 0000 0000 0000
6 14 0002 0000 0347
7 16 0347 0002 0051

0050 33 0000 0000 0000
1 14 0003 0000 0347
2 16 0347 0003 0054
3 33 0000 0000 0000
4 14 3036 3036 0347
5 16 0347 3036 0057
6 33 0000 0000 0000
7 15 3036 0000 0347

0060 16 0347 0000 0062
1 33 0000 0000 0000
2 15 0000 0000 0347
3 16 0347 0000 0065
4 33 0000 0000 0000
5 15 0000 0003 0347
6 16 0347 0000 0070
7 33 0000 0000 0000

0070 15 3036 3036 0347
1 16 0347 3036 0073
2 33 0000 0000 0000
3 17 0002 0003 0347
4 16 0347 0000 0076
5 "3 OOCO 0 00 I
6 17 0003 0002 0347
7 16 0347 0000 0101

0100 33 0000 0000 0000
1 17 0002 0002 0347
2 16 0347 3036 0107
3 33 0000 0000 0000
4 17 0003 0003 0347

- 5 16 0347 3036 0107
6 33 0000 0000 0000
7 31 3000 0043 0110

0110 01 0004 0004 0347
I 16 0347 0002 0113
2 33 0000 0000 0000
3 01 0003 0002 0347
4 16 0347 0004 0116
5 33 0000 0000 0000
6 01 0006 0006 0347
7 16 0347 0007 0121

0120 33 0000
1 01 0004
2 16 0347
3 33 0000
4 01 0002
5 16 0347
6 33 0000
7 01 0010

0130 16 0347
1 33 0000
2 01 0012
3 16 0347
4 33 0000
5 01 3026
6 16 0347
7 33 0000

0140 01 3026
1 16 0347
2 33 0000
3 0> 3026
4 16 0347
5 33 0000
6 01 3026
7 16 0347

0150 33 0000
I 07 0007
2 16 0347
3 33 0000
4 31 3000
5 02 0002
6 16 0347
7 33 0000

0160 06 0003
1 16 0347
2 33 0000
3 03 0002
4 16 0347
5 33 0000
6 13 0000
7 16 0347

0170 33 0000
I 11 0021
2 16 0347
3 33 0000
4 11 0023
5 16 0347
6 33 0000
7 11 3035

0200 16 0347
1 33 0000
2 11 0004
3 16 0347
4 33 0000
5 12 0026
6 16 0347
7 33 0000

0210 12 0030
1 16 0347
2 33 0000
3 05 0000
4 01 0353
5 10 0354
6 31 0353
7 02 0000

0220 01 0353
1 15 0354
2 12 0352
3 15 0354
4 05 0000
5 02 0000
6 17 0352
7 11 0353

0230 11 0354
I 16 0355
2 22 0353
3 33 0000
4 06 0353
5 05 0354
6 C6 0354
7 01 0353

0000 0000
0005 0347
0003 0124
0000 0000
0003 0347
0004 0127
0000 0000
0011 0347
0017 0132
0000 0000
0013 0347
0014 0135
0000 0000
Ole 0347
0015 0140
0000 0000
0016 0347
0016 0143
0000 0000

10 0347
0010 0146
0000 0000
0013 0347
0013 0151
0000 0000
0007 0347
0020 0154
0000 0000
0110 0155
0002 0347
3026 0160
0000 0000
0003 0347
3026 0163
0000 0000
0003 0347
3036 0166.
0000 O I
0261 0347
0261 0171
0000 0000
0022 0347
0015 0174
0000 0000
3035 0347
0022 0177
0000 0000
3035 0347
0024 0202
0000 0000
0005 0347
0025 0205
0000 0000
0027 0347
0004 0210
0000 0000
0031 0347
0032 0213
0000 O)
0000 0263
0000 (3
3042 0353
0221 0217
0353 0353
3042 0353
0260 0352
3044 0352
3044 0351
0351 0226
0352 0352
0353 0353
0354 0355
0353 0356
0356 0234
0356 0233
0000 f
0000 0355
0355 0240
0000 0355
0000 0354

- 219 -

<B4Z> 01 0354 I DOO Sfc
1 02 3035 0355 357
2 II 0356 0357 0352
3 01 0356 0352 0356
1 II 0357 0357 0367
5 05 0357 0000 024'
5 05 0000 0000 0242
7 12 0354 0355 0357
v 02 0357 0356 0352
1 05 0352 3002 0254
2 22 0354 0357 0253

I 33 0000 0000 0012
4 31 3000 0214 0043
5 31 3001 0214 0043

33 0000 0000 0000
05 .000 0000 0042

0260 II 7777 7777 TITI
1 02 5252 1 5252

2 05 2525 21 ' 2524
3 35 0002 0350 0347
4 16 0347 0002 0266
5 13 0000 0000 0000
i 16 0350 3026 0270

7 33 0000 0000 0000
J270 35 0000 0350 0347

1 16 0347 0000 0273
2 33 0000 0000 0000
3 16 0350 3026 0275
4 33 0000 0000 0000
8 35 3026 0360 0347
6 16 0347 3026 0300
7 33 0000 0000 0000

0300 16 0350 3026 0302
I 33 0000 0000 0000
2 35 3177 0350 0347

3 U 0347 J U305
4 33 0000 0000 0000
5 16 0350 0331 W07
6 33 0000 0000 M)
7 13 0337 0000 0347

0310 16 0347 0000 0312
I 33 0000 0000 0000
2 13 0337 3026 0347
3 16 0347 0000 0315
4 33 0000 0000 0000
5 13 0340 3026 0347
6 16 0347 0343 0320
7 33 0000 0000 0000

0320 13 0341 3177 0347
1 16 0347 3026 0323
2 33 0000 0Q00 0000
3 13 0342 3177 0347
4 16 0347 3012 0326
5 33 0000 0000 0000
6 13 0344 0003 0347
7 16 0347 3026 0331

0330 33 0000 0000 0000
I 13 0345 0003 0347
2 16 0347 0000 0334
3 33 0000 0000 0000
4 05 0000 0000 0360
6 30 0000 0000 0000
6 20 0000 0000 0047
7 00 0000 0000 0014

0340 20 0000 0000 0014
1 00 0000 0000 0050
2 20 0000 0000 0050
3 00 0020 0000 0000
4 20 0000 0000 0100
5 20 0000 0000 0101

Piinludt TfcBi;
Instructions 0001-0006 — check summation of test.
Instructions 0007-0013 — octal printout.
Instructions 0014-0017 — decimal printout.

Following octal printout, a halt occurs; the printout switch i r.
then set to decimal printout.

0001 26 0654 0001 6 — — 0100 —
2 07 4000 0654 0654 7 _ — ooio —
3 27 4001 0002 0004 0036 _ _ 0001 —
4 16 0654 0655 0007 1 — — — 1000
5 22 0654 0654 0006 2 — — — 0100
6 33 - - ** 3 — - - 0010
7 22 0020 0307 0010 4 — — - 0001

0010 31 3000 0007 0011 5 31 — _ _
1 22 0310 0343 0012 6 30 1000 — —
2 31 3000 0013 0011 7 20 0100 — —
3 33 - - 0040 20 0010 — —
4 22 0344 0627 0015 1 20 0001 — —
5 31 3000 0014 0016 2 20 — 1000 -
6 22 0630 0653 0017 3 20 — 0100 —
7 31 3000 0006 0016 4 20 — 0010 —

0020 01 - — 5 20 — 0001 —
1 — 1000 — 6 20 — — 1000
2 — 0100 — 7 20 — — 0100
3 — 0010 0050 20 — — 0010
4 — 0001 — 1 20 — — 0001
5 — 0000 1000 — 2 02 — — —

220

J

3 00 2000 — MM
4 — 0200 — MM
5 — 0020 — MM
6 — 0002 — MM
7 — - 2000 MM

0060 — —,0200
1 — — 0020 MM
2 — — 0002 MM
3 ■*■■» ^M* 2000
4 MM MM MM 0200
5 ■M* MM MM 002C
6 MM MM MM 0002
7 32 — — MM

0070 30 2000 — MM
1 20 0200 — MM
2 20 0020 —
3 20 0002 — —•

0074 20 — 2000 MM
6 20 — 0200 MM
6 20 — 0020 MM
7 20 — 0002 MM

0100 20 — — 2000
1 20 — — 0200
2 20 — — 0020
3 20 - - 0002
4 03 - —
5 — 3000 — MM
6 — 0300 — MM
7 — 0030 — MM

0110 — 0003 — MM
1 - — 3000 MM
2 — — 0300 MM
3 — — 0030 MM
4 — — 0003 MM
5 MM MM MM 3000
6 MM MM MM 0100
7 <MM MM* MM* 0030

0120 ■ MM MM MM* 000'*
1 33 — — MM
2 30 3000 — MM
3 20 0300 — MM
4 20 0030 — MM
5 20 0003 — MM
6 20 — a MM
7 20 — 0300 MM

0130 20 — 0030 MM
1 20 — ft 3 MM
2 • 20 — — 3 03
3 20 — — 0300
4 20 — — .A
5 20 — — 0003
6 04 — — MM
7 — 4000 — MM

0140 — 0400 — MM
1 — 0040 — MM
2 — 0004 — •_
3 — — 4000 MM
4 — — 0400 MM
5 — — 0040 MM
6 — — 0004 MM
7 MM «MM MM, 4000

0150 MM *M* MB 0400
1 MM MM MM 0040
2 MM <M*M MM* 0004
3 34 — — MM
4 30 4000 — MM
5 20 0400 — MM
6 20 0040 — MM
7 MM MM MM MM

0160 M^M MM MM* MM
1 20 0004 — MM
2 21 — 000 MM
3 20 — 0400 MM
4 20 — 0040
5 20 — 0004 M*
6 20 — — '4000

0167 20 — MM 0400
0170 20 — «*M> U40

1 20 - MM 0004
2 05 - MM MM
3 — 5000 MM MM
4 — 0,500 MM MM
5 — 0050 MM MM
6 — 0005 MM MM»
7 MM <. M 5000 ^M

0200 MM — 0500 MM
1 0050 MM>
2 —* MM 0005 •M*
3 MM* MM MM 5003
4 MM MM MM 0500
5 MM MM MM 0050
6 MM 0005
7 35 - MM MM

0210 30 5000 MM
1 20 0500 MM MM
2 20 0050 MM M—
3 20 0005 M*M MM
4 20 — 5000
5 20 — 0500 MM
6 20 — 0050 MM
7 20 — 0005 MM

0220 20 — MM 5000
! 20 — MM> 0500
2 20 — MM 050
3 20 — MM 0005
4 06 — *M MM
5 — 6000 MM MM
6 — 0600 -M •*■*
7 — 0060 *M*

0230 — 0006 MM MM
1 ^M, «MM 6000 MM
2 ... MM 0600 MM
3 MM MM. 0060 MM
4 MM MM 0006 MM
5 MM «M« MM 6000
6 MM MM MM 0
7 MM MM MM 0

0240 MM M. MM 0006
1 36 — MM MM
2 30 6000 •MM MM
3 20 0600 MM MM
4 20 ft 50 •MM MM
5 20 0006 MM MM
6 20 0000 6000 MM
7 20 — 0600 MM

0250 20 — 0060 *M^*
1 20 — 0006 MM
2 20 — MM 6000
3 20 — MM 0600
4 20 — MM 0060
5 20 — MM 0006
6 07 - MM* MM
7 — 7000 MM

0260 — 0700 MM MM
1 — 0070 MM MM

0262 - 0007 «MM MM
3 M* MM 7000 MM
4 MM MM 0700 «M»
5 MM MM 0070 MM
6 MM MM 0007 MM
7 MM —— —* 7 »

0270 M— . MM MM 0700
1 MM — MM 0070
2 MM MM MM 0007
3 37 — MM M
4 30 7000
5 20 0700 *M* M*
6 20 0070 MM MM
7 20 0007 ^M

0300 20 — 7000 MM
1 20 — 0700 MM

221

^MHW1****" ■**”»»«'*'mwt, «*«,

2
3
4
5
6
7

0310
I
2
3
4
5
6
7

0320
1
2
3
4
5
6
7

0330
1
2
3
4
5
6
7

0340
1
2
3
4
S
6
7

0350
I
2
3
4

20 — 0070 —
— 0007 —

20 — — 7000
20 — — 0700
20 - — 0070
20 — — 0007
00 1234 5670 1234
04 0123 4567 0123

■ 03 4012 3456 7012
02 3401 2345 6701
JI 2340 1234 5670
00 1234 0123 4567
07 0123 4012 3456
06 7012 3401 2345
05 6701 2340 1234
04 5670 1234 0123
03 4567 0123 4012
02 3456 7012 3401
01 2345 6701 2345

20 1234 5670 1234
34 0123 4567 0123
23 4012 3456 7012
32 3401 2345 6701
21 2340 1234 5670
30 1234 0123 4567
27 0123 4012 3456
36 7012 3401 2345
25 6701 2340 1234
34 5670 1234 0123
23 4567 0123 4012
32 3456 7012 3401
21 2345 6701 2340
37 7777 7777 7777

- 1000
— 0100
— 0010
— 0001

1000
0100
0010

0355 + 0001
6 - 10 —
7 — 01

0360 — — 1000
1 — 0100 ——
2 - 0010
3 — —— 0001
4 — 1000
5 - —• 0100
6 — 0010
7 — 0001

0370 + 20 — Mini
1 + 02 —— <-—
2 + ■ «■> 2000 aiaM*
3 + 0200
4 + 0020
5 + — 0002 —
6 + ■ — — 2000
7 + — —— 0200

0400 + —. 0020
1 + —— — 0002
2 — 20
3 — 02 —
4 — 2000
5 — 0200
6 — 0020
7 — —■» 0002

0410 — — 2001
1 — —• — 0200
2 - — — 0020

—• — 0002
4 + 30
5 + 03
6 + __ 3000 ——
7 + —— 0300 —

0420
1
2
3
4
5
6
7

0430
I
2
3
4
5

*6
7

0440
1
2
3
4
5
6
7

0030 —
0003 —
— 3000
— 0300
— 0030
— 0003

3000
0300
0030
0003

3000
0300
0030
0003

4000 —
0400 —
0040 —
0004 —
— 4000
— 0400

0450 + — — 0040
1 + ~ — 0004
2 — 40 — —
3 — 04 — —
4 —
5-------
6-------
7-------

0460 -------
1-------
2-------
3-------
4 + 50
5 + 05
6 +
7 +

0470 +
1

- 2 + -
3 + -
4 + -
5 + —
6 — 50
7 — 05

0500 -------
1-------
2-------
3-------
4-------
5-------
6-------
7-------

0510 + 60
1 + 06
2 + -
3 + -

4000 —
0400 —
0040 —
0004 —
— 4000
— 0400
— 0040
— 0004

5000 —
0500 —
0050 —

+ — 0005 —
— 5000
— 0500
— 0050
— 0005

5000 —
0500 —
0050 —
0005 —
— 5000
— 0500
— 0050
— 0005

6000 —
0600 —

4 + — 0060 ,—
5 + — 0006 —
6 + — — 6000
7 + — — 0600

0520 + — — 0060
1 + -
2 — 60

— 0006

x 3 — 06 — —
4 ------- 6000 —
5-------
6-------
7-------

0530 -------
1-------
2-------
3-------
4 + 70
5 + 07
6 + -

0600 —
0060 -
0006 —
— 6000
— 0600
— 0060
— 0006

7000 —

222

7 + — 0700
0540 + — 0070

] 4. — 0007

6 f
7 +

— 9000 —
— 0900 —

71_k
0700
0070
0007

5 — 70
7 — 07

0550 -------
1-------
2-------
3-------
4-------
5-------
6-------
7-------

u560 + 80

7u00
0700
0070
0007

7000
0700
0070
0007

eooo
0800
0080
0008

0610 +
i f
2 +
3 +
4 +
5 +
6 -
7 -

0620 —
J -
2 -
3 —
4 —
5 -
6 -
7 -

0630 +
I +

$

01
90

0090 -
0009 -
— 900C
— 0900
— 0090
- 0009

9000
090q
0090
0009

9000
0900
0090

— 0009
2345 6789
1234 5678

89 0123 4567
78 9012 3456
67-8901 2345

0570 + -
1 + -
2 — 80
3 — 08
4-------
5-------
6-------
7-------

0600 -------
1-------

8000
0800
0080
0008

8000
0800
0080
0008

8000
0800
0080
0008

7 +
0640 +

1 +
2 -

56 7890 1234
45 6789 0123
34 5678 9012
23 4567 8901
12 3456 7890
01 2345 6789
90 1234 5678
89 0123 4567
78 9012 3456

6 — 67 890! 2345
7 — 56 7890 1234

0650 — 45 6789 0123
1 - 34 5678 9012
2 - 23 4567 8901
3 — 12 3456 7890

Magnetic Drum (MB) Test
Instructions 0001-0006 — initialize instructions calling to MB.
Instructions 0007-0010 — MB shift counter. .
Instructions 0011-0015 — write codes into OZU.
Instructions 0016-0021 — generate instructions calling to MB.
Instructions 0024-0030 — write onto MB and read.
Instructions 0042-004? — check summation of test.

Bb 21
0001 0!

2 01
3 01
4 01
5 01
6 01
7 01

0010 01
1 10
2 34
3 01

0014 01

0001 0062 0000
3200 0000 0032
0051 0000 0030
0052 mXX 0024
0053 0000 0025
0054 0000 0026
0055 0000 0027
3011 0000 0056
3011 0000 0057
3000 3040 0080
0057 0000 00UU
3007 0000 4062
3011 0057 0067

5 05 0057 3000 0012
6 03 3002 0024 0024
7 03 3002 0026 0026

0020 03 3000 0025 0025
1 03 3000 0027 0027
2 12 3000 3040 0061
3 03 0061 0030 0030
4 00 0000 0000 0000
5 00 0000 0000 0000
6 00 0000 0000 0000
7 00 0000 0000 0000

0030 00 0000 0000 0000
1 16 4063 5031 0033
2 33 0000 0000 0000
3 27 4001 0031 0034
4 03 3012 0032 0032
5 03 0060 0024 0024
6 03 0060 0026 0026
7 01 3011 0056 0056

0040 05 0056 3001 0024
1 31 0000 0001 0000
2 01 0000 0000 0062
3 26 0062 0000 0000
4 87 400! 0062 0062
5 27 4001 0044 0046

0046 22 0062 0062 0047
7 33 0000 0000 0000

0050 31 0000 0001 0000
1 26 0000 0000 0000
2 25 0001 0000 0000
3 23 0063 0062 0026
4 25 0000 0000 0000
5 I 1031 1030 0030
6 00 0000 0000 0000
7 00 0000 0000 0000

0060 00 0000 0000 0000
I 00 0000 0000 0000
2 00 0000 0000 0000- 223

mhv*** iWmJww* m mm—

Appendix 3
Instruction System for "Kiev" Computer

Arithmetic and logical operations; 2) control operation; 3) KOp;
4) name of operation; 5) possibility of address modification; 6) emer­
gency halt: 7) tested condition; 8) where satisfied; 9) where not sat­
isfied; 10) yes; 11) addition; 12) subtraction; 13) instruction addi­
tion; 14) subtraction of absolute values; 15) cyclic addition; 16) mul­
tiplication without rounding; 17) multiplication with rounding; 18) di­
vision; 19) logical shift: 20) logical addition; 21) logical multiplica­
tion; 22) nonequality; 23) normalization; 24) no change; 25) the same;
26) loading with number conversion into locations from ’An to 'Ao;
27) loading without number conversion into locations from ’A1 to ’A ;
28) reading words out of locations from ’A.) to ’A2; 29) write onto MB;
30) read from MB; 31) preparatory operation for MB; 32) halt; 33) VU
call operations.

1.
REFERENCES

Glushkov, V.M., Ob optimal’nom ob"yeme operativnykh zapomina-
yushchiko ustroystv [On Optimum Size of High-Speed Storage
Devices], DAN USSR [Proc. Acad. Sci. UkrSSR], i960, No. 5.
Glushkov, V.M., Dva unLversal’nykh kriteriya effektlvnortj 2.

- 224 -

f

vychislitel’nykh mashin [Two Universal Criteria for the Effi­
ciency of Computers], DAN USSR, i960, No. 4.
Glushkov, V.M., Keruyuchi mashini avtomatizovanogo virobni-
tstva [Control Computers in Automated Production], Tovaristvo
po rozpovsyudzhennyu polltichnikh i tekhnichnikh znan’ [So­
ciety for the Dissemination of Political and Technical Know­
ledge], Kiev, i960.
Gnedenko, B.V., Glushkov, V.M. and Yushchenko, K.L., Matemati-
chniparametri universal'noi tsifrovol mashini ”Kilv” [Mathe­
matical Parameters of the "Kiev" General-Purpose Digital Com­
puter], Zbirnik prats' OTs AN URSR [Collected Papers of the
Computer Center, UkrSSR Acad. Sci.], Vol. II, Kiev, 1961.
Gnedenko, B.V., Korolyuk, V.S. and Yushchenko, Ye.L., Elementy
programmirovaniya [Elements of Programming], Fizmatgiz [State
Publishing House for Physical-Mathematical Literature], Mos­
cow, 1961.
Dashevs'kiy, L.N, Pogrebins'kiy, S.B. and Shkabara, K.O.,
Strukturna skema ta osnovni printsipi pobudovi tsifrovoi
avtomatichnoi mashini ”Kiiv” [Structural Diagram and Basic
Design Principles of the "Kiev" Automatic Digital Computer],
Zbirnik prats' OTs AN URSR, Vol. II, Kiev, 1961.
Yershov, Ye.P., Programmiruyushchaya programme dlya BESM
[Translator Program for BESM], Moscow, Izd-vo AN SSSR [Acad.
Sci. USSR Press], 1958.
Ivanenko, L.M. and Yushchenko, K.L., Osnovni pitannya pobudo­
vi programuyuchoy program! dlya mashini "Kiiv” [Basic Prob­
lems in the Design of Programming Programs for the "Kiev" Com­
puter], Zbirnik prats' OTs AN URSR, Vol. II, Kiev, 1961.
Korolyuk, V.S., Shkabara, K.O. and Yushchenko, K.L., Grupovi

FTD-TT-65-97 3/1+2 - 225 -

opyeratsii mashini "Kiev" [Group Operations of the "Kiev"
Computer], Zbirnik prats’ OTs AN URSR, Vol. II, Kiev, 1961.

10. Korolyuk, V.S. and Yushchenko, K.L., Pitannya teorii 1
praktiki programuvannya [Problems of Programming Theory and
Practice], Zbirnik prats’ OTs AN URSR, Vol. I, Kiev, 1961.

11. Letichevs’kiy, O.A., Ekvivalentnist’ v odnomu klasi adre-
snikh algoritmiv [Equivalence in One Class of Address Algor­
ithms], Zbirnik prats’ OTs AN URSR, Vol. I, Kiev, 1961.

12. Si sterna standartnykh podprogramm [System of Standard Routines]
Collection edited by Shura-Bura, M.R., Fizmatgiz, Mowcow,
1959.

13. Soobshcheniye ob algoritmicheskom yazyke Algol [Report on
the Algol Algorithmic Language], Izd-vo AN SSSR, Moscow,
i960.

14. Faddeyev, D.K. and Faddeyeva, V.N., Vychislitel’nyyc metody
lineynoy algebry [Computational Methods of Linear Algebra],
Fizmatgiz, Moscow, i960.

15. Yushchenko, Ye.L. , Adresnoye programmirovaniye [Address I’ <
gramming], Postal Seminar ”Kibernetika na transporte" [Cyber­
netics in Transportation], KDNTP [not identified],
1962.

16. Yushchenko, K. L. , Adresni algoritmi ta tsifrovi matematichni
mashini [Address of Algorithms and Digital Mathematics] Ma­
chines], Zbirnik prats’ OTs AN URSR, Vol. II, Kiev,]<■* I.

17. Yushchenko, K.L., Adresni algoritmi ta tsifrovi avtomatichni
mashini [Address Algorithms and Automatic Digital Computer., j,
DAN URSR [Proc. Acad. Sci. UkrSSR], Vol. VI, Kiev, 1962.

18. Yushchenko, K. L. , Rivni ta still adresnoi movi ta prob Lerna
avtomatlzatsii programuvannya [Address Language Love!.-, and

FTD-TT-65-972/1+2 - 226 -

the Problem of Programming Automation], DAN URSR, Vol. VII,
Kiev, 1962.

19- Yushchenko, K.P. and Bistrova, L.P., Programuyucha progrrma,
informatsieyu dlya yakoi sluzhit’ adresniy algoritm [A Pro­
gramming Program Using an Address Algorithm as Information],
Zbirnik prats’ OTs AN URSR, Vol. Ill, Kiev, 1961.

20. Yushchenko, K.L., Dryuchina, M.O., Biblioteka pidprogram
mashinl "Kiev" [Subroutine Library of the "Kiev" Computer],
Zbirnik prats’ OTs AN URSR, Vol. II, Kiev, 1961.

21. Yushchenko, K.L. and Kostyuchenko, O.I., Algoritm perekladu
duzhkovogo zapisu formul u bezduzhkoviy zapis Lukasevicha
[Algorithm Translating Bracketed Formula Notation to Unbracke­
ted Lukashevich Notation], Zbirnik prats’ OTs AN URSR, Vol.
Ill, Kiev, 1961.

22. Yushchenko, K.L. and Mikhaylova, O.I., Algoritmi formal’noi
perevirki pravil’nosti duzhkovogo ta bezduzhkovogo zapisu
formul z odno- i dvomistsevimi operatsiyami [Algorithm for
Formal Verification of Bracketed and Unbracketed Formular
Notation with One- and Two-Position Operations], Zbirnik
prats’ OTs AN URSR, Vol. Ill, Kiev, 1961.

23- Yablonskiy, S.V., Trudy matematicheskogo institute im.
Steklova [Transactions of the Steklov Mathematics Institute],
Vol. I, AN SSSR [Acad. Sci. USSR], Moscow, 1958.

FTD-TT-65-972/1+2 - 227 -

